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This paper is the continuation of the previous paper by Deemekij and Vetterlein
(2001),Int. J. Theor. Phys40(3). We show that any pseudoeffect algebra fulfilling a
certain property of Riesz type is representable by a unitinterval of some (not necessarily
Abelian) partially ordered group. The relation of pseudoeffect to pseudo-MV algebras is
made clear, and thiegroup representation theorem for the latter structure is re-proved.

With this paper, we continue the work Dveexiskij and Vetterlein (2001), where
we introduced a new algebraic structure called a pseudoeffect algebra. Section and
theorem numbers continue from those of the paper mentioned above.

5. REPRESENTATION OF PSEUDOEFFECT ALGEBRAS
BY UNIT INTERVALS OF po-GROUPS

Ouraimisto develop a structure theory for pseudoeffect algebras. As intervals
in po-groups served as prototypes, we ask, first, about group representations.

Now, even when assuming commutativity, it is, in spite of its importance
for the foundations of quantum mechanics, an open problem how to characterize
exactly those pseudoeffect algebras that are intervals of partially ordered groups.
On the other hand, a certain Riesz property introduced in Section 3 is a sufficient
condition; the aim of this section is to show that any pseudoeffect algebra that
fulfils the Commutational Riesz Decomposition Property [see Definition 3.1(e)]
is an interval pseudoeffect algebra.

We will use the so-called word technique, which was introduced by Baer
(1949) and Wyler (1966). It has also been successfully applied to effect-algebras
fulfilling the Riesz Interpolation Property (Ravindran, 1966) and to commutative
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BCK-algebras with the relative cancellation property (see Dsemskij and
Pulmannoa’(2000), Chapter 5.2.5).

As a first step, we embed a given pseudoeffect algebra into a semigroup. The
semigroup will then be extended tga-group.

Definition 5.1. Let (E; +, 0, 1) be a pseudoeffect algebra.

(i) A sequenceA = (ay, ..., a,) of finite, but nonzero, length with entries
from E is called awordin E. We denote byV(E), the set of all words;
that is,

W(E)d=6f{(a1,...,an):al,...,ane E,n> 1}

We define aradditionin W(E) as the concatenation; that is,

+: W(E) x W(E) - W(E),
((ag, ..., am), (b1, ..., bn)) — (&1, ..., 8m, b1, ..., bn).

(i) We call two wordsA and B of E directly similar, in symbolsA ~ B,
if one of it has the formd;, ..., ay), n > 2, and the other has the form
(az,...,ap+apt1,...,a), 1< p<n.

We call two wordsA and B similar, in symbolsA ~ B, if there are
words Ao, ..., A, k>0, suchthatA= Ag~ A; ~---~ Ac=B. In
such a case, we say thatand B areconnected by a chain of length k.

We setforay, ...,a, € E,n> 1,

[ar, ..., a0 2 (Ac W(E): A~ (ay,...,an)),

and we put
C(E)E' ([ay,....a) &, ..., a1 € E,n > 1.

Lemmab5.2. Let(E;+, 0, 1) be a pseudoeffect algebra.

(i) Similarity inW(E) is an equivalence relation compatible with With+
as the induced relationC(E); +) is a semigroup with the neutral element
[O].

(i) Foray,...,an,be E,n>1,(as,...,a,) ~(b)ifandonlyifa +--- +
a, exists and equals b.

Proof:

(i) By constructiony~ is an equivalence relation.
From A; ~ AandB; ~ B, it follows thatA; + B, ~ A+ B, so+
is definable irC(E).
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As W(E) is associative, so i§(E), that is,C(E) is a semigroup. It
has [0] as a neutral element, because, for examgie, |[., an] + [0] =
[a1,...,an, 0] =[a,...,a&]

(i) Ifforaword (Xq, ..., Xm) the sum of its elementg + - - - + X, exists, the
same is true for any word directly similar t&( .. ., Xm), and the sums
are equal. So the “only if” part follows by induction on the minimal length
of a chain by whichlf) and @y, . .., a,) are connected.

The “if” part is obvious. O

We note that (ii) of this lemma has been proved by Baer (Baer, 1949,
Theorem 1) in a much more general context.

We will now prove the crucial lemma needed for the representation theorem.
For the special notation used herein, see the paragraph preceding Lemma 3.9.

Lemma5.3. Let(E;+, 0, 1) be a pseudoeffect algebra fulfilling (RPPLet
(al,...,aﬂ):(bl,...,bn),

where m, n> 1. Then there are elementsd. . ., dn, € E such that

dig -+ din — &
dm -+ dnwn —  @m
J \:
by --- by

and such that, fol <i <m, 1< j < n, we have

Gisnj 4 -+ dmj cOM di i1+ - + .

Proof: The proofis by induction on the minimal lendtiof a chain that connects
(a,...,am)and by, ..., by).

If Kk =0,wehavedy, ..., an) = (b, ..., by andthe elementsin the scheme
ag o ... 0 — a1
0O a --- 0 - &
0O 0 --- ay3 — an
TN y
al a2 oo afT'I

obviously fulfil the statements.
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Suppose the statement holds kor 1, k > 1; we have to prove that it then
holds also fok. So letA = (ay, ..., am) andB = (by, ..., by) be connected by a
chain of lengthk, sayA = Ag ~ --- ~ Ac = B.

There are two possibilities for howy = B = (by, ..., b,) is constructed
from Ayx_1.

1. Let Ak,lz(bl,...,b%,,b%,...,bn),lg p<n, and bp=b,1)+b%.
Then, by hypothesis there are element&iaccording to the scheme

dig - dllp dlzp oo i > &

Gma - dh, d2, o+ Omn —  am 1)
¥ ool ¥

by --- bt b% -+ by,

such that the sums of elements placed below and right from any element

fulfil the com-relation. Consider now the scheme
dy; - d11p+d12p s I

dm - -- d&}ijd%p oo dmme

Here the lines still sum up tay, ..., an, and the unchanged columns
clearly sum up as before tm, ..., by_1, bpi1, ..., by. Because of the
com-relations, we have that any element in (1) commutes with any other
that is placed further up and right. So th#h column also adds up to what
it should:

—pl 2 _ 41 1 2 2
bp=bh+b2 =di,+-- +di +dZ +- +dZ
=di, +df,+dz, +- - +dy,+d5, + -+ 07,

=dj, +df, +d3, +dZ, + -+ dy, 4+ 07,
Now the only new conditions concerning tbem-relation are the follow-
ing, where 1< j < m:
d? g+ Py o+ dh, +di comd) pyy+ -+ djn. (2)

By the same reasoning as before, the firsttermin (2) is equdﬂ% +
- dpg) + (07, , + -+ 4 dZ ). Here, we know by hypothesis that both
the first term in brackets and the second one fulfil tleen-condition
together with the second term in (2). Now by Lemma 3.2(i), (2) follows.
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2. LetA1 = (b1, ..., bp+Dbpsa, ..., by), 1 < p < n.Then by hypothesis
there are elements & according to the scheme

dll el dln — al
(o MU €m )
\: \ \:
by - bp+bpya - by

such that the sums of elements placed below and right from any element
fulfil the com-relation. Lemma 3.9 applied to

bp+bpyr =€+ +em
gives elementsl;p, dy py1, . . ., Amp, dm p+1 € E, such that
dip dipr1 — &

dmp dm,p+1 — €Em
A A
by bpas
andforl< j <m,
djt1p+ -+ dnp cOm dj pi1.
Then we have
dig -+ dip dyppr - O — &
Om - dmp dm,p+l Onn = @m
\: \ 2 \:
by -+ by Dbpy1 -~ by

As a sum when deleting any summand from it gets smaller, and as the
comrelation is additive by Lemma 3.2(i), we see that the conditions con-
cerning thecom-relation are again preserved hereirn

With the help of Lemma 5.3, we will now check for the semigradlff) the
properties that are necessary and sufficient for extending ipmgroup whose
positive cone it is. The extension itself is described in the subsequent Definition
5.5and Lemma 5.6.

Lemma 5.4. Let(E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDPThen
C(E) is a semigroup such that the following hold:

(i) [0] is a neutral element.
(i) Leta, b € C(E). Froma + b = [0], it follows thata = b = [0].
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(iii) Leta,b,ceC(E). Froma+b = a+ ¢, it follows thatb = ¢; from
b+ a = c+ a, it follows thatb = c.

(iv) Forany paira, b € C(E), thereis ac € C(E) suchthata + b = ¢ + «q,
and there is @ € C(E) such thata + b = b + 0.

Proof: ThatC(E) is a semigroup fulfilling (i) has been proved in Lemma 5.2(i).
Part (i) follows from Lemma 5.2(ii) and Lemma 1.4(ii).

For part (iii), we may suppos@& =[a], and letb =[by,...,by], ¢ =
[C1,...,Cn]. SO we will show that &, by,...,by) >~ (a,cy,...,C,) implies
(b, ..., bm) >~ (C1, ..., Cn); then the first part will follow, and the second one

is proved analogously.
By our assumption, there are, by Lemma 5.3, elemenEsaccording to the
following scheme:
d & -~ dy — a
€ ey -+ ey — by

€n €m1 - €mn —> bm

I |

a G Ch,
where for 1< j <i <m,1 <k <n, we haveg + ejx = ejx + &, and for 1<
k<i<ml<j<l<n, we haveg; +&q=6&q+8&j, and for 1<i <m,
1<j<k=<n, we haveg; +dc =dc+8j. Now, a=d+di+---+dy=
d+e +---+enimpliesd; + --- +d, = € + - - - + ey. Using this and the com-
mutativity relations, we get

(b, ...,bm) ~(e1,€11,..-,€mn, .-, €m, EnL, - - - s Emn)
~(en,....,em, €1, ..., 8n1,---» €n, .-, Emn)
>~ (dy,...,0h,€11,.--,€m1s---, €, .-, Emn)
~ (di, e1,..-,€m1s---,0n, €0, .-, Emn)
~(Cc1,...,Cn).

In case of (iv), we will prove the first part only; the second is shown analo-
gously. Moreover, we suppose that= [a] andb = [b]; the claim then follows by
an easy induction argument. So what we will show is that there is a weundh
that @, b) = ¢ + (a).
By (RDP;) we have for some, ..., ds € E,
d1 d2 — a
d3 d — a”
Vol
b~ b
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So there are element, d; € E such that §, b) = (d; + dz, dz + da) ~ (d) +
di, dp, ds) =~ (d, a+ da) = (d5, dj + &) ~ (d3, d;) + (a), where we used the fact
that because af; < a~ and Lemma 1.6(iv)a + d; exists. O

Definition 5.5. Let (E; +, 0, 1) be a pseudoeffect algebra fulfilling (RDPIn
view of Lemma 5.4, we may define, for amy b € C(E), ap to be the unique
element such that + b = b + ap.

Define forC(E) x C(E) the binary operatior- by

(a,8) + (¢, 0) £'(a + ¢, 0 + b)

fora, b,c,0 € C(E).
Define forC(E) x C(E)

(0,6) ~ (,0) S atd, =c+b,

(a,8) £ {(c,0) : (c,9) ~ (a, b)},

G(E) £ {(a,b) : a, b € C(E)},

def

G(E)" = {{(a.[0]): a € C(E)},
te: E—>G(E), ar (al],[0]).

Lemma 5.6. Let(E;+, 0, 1) be a pseudoeffect algebra fulfiling (RPPThen
therelatioronC(E) x C(E) is an equivalence relation thatis compatible with
With + as the derived operation an@( E)* as the positive conégG(E); +, <) is
a po-group. We havg(E) = G(E)* — G(E)™ = —G(E)* + G(E)*.

Now, e: C(E) — G(E), a — (a, [0]) establishes a semigroup isomorphism
betweerC(E) andG(E)*.

Proof: Thislemma is a consequence of Lemma 5.4. For the details of the proof,
see Fuchs (1965), Theorem 11.40

We arrive at our main theorem.

Theorem 5.7. Let(E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDPThen
te: E — G(E),a— ([a],[0]) determines an isomorphism betwegdt +, 0, 1)
and (I'(G(E), ([1]. [0])); +. ([O]. [O]), {[1]. [0])), where([1], [0]) is a strong unit
of G(E).

In particular, E is an interval pseudoeffect algebra.

Proof: (g isinjective. Indeed, foa, b € E, ([a], [0]) = ([b], [0]) implies [a] =
[b] by the injectivity ofe from Lemma 5.6, and thisimplies= bby Lemma 5.2(ii).
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The image ofg isT'(G(E), ([1], [0])). Indeed, any positive element G{E)
is of the form({a, [0]) for somea € C(E) by the surjectivity ok from Lemma 5.6.
Now, (a, [0]) < {[1], [0]) means for some other positive elem¢mt[0]), where
b € C(E), that(a, [0]) + (b, [0]) = ([1], [0]). But thena + b = [1], because, by
Lemma 5.6,¢ is a semigroup isomorphism. It follows by Lemma 5.2(ii) that
a =[a], b = [b] for somea, b € E, that is,(a, [0]) = tg(a).

Now, (g: E — T'(G(E), ([1], [0])) is an isomorphism with respect to. In-
deed, fom, b € E, a + bexistsinE and equalsiff (a, b) ~ (c)iff[ c] = [a] + [b]
iff ([c], [0]) = ([a], [O]) + ([b], [0]) iff te(C) = te(a) + te(b). Here we used again
the fact that from Lemma 5.6 is a semigroup isomorphism.

It remains to show thaf{1], [0]) is a strong unit ofG(E). Becaus&j(E) =
G(E)* — G(E)* holds and becaus€(E)" is isomorphic toC(E), it is suffi-
cient to show that ang = [ay, ..., &,] € C(E) lies below a multiple of [1]. By
Lemma 5.4(iv), we conclude that

[1,....,1] =la.ar,....an.a7] =[a1,....,a)] + b forsomeb € C(E),
ntimes
which means
a<[]+---+[1]. 4
ntimes

From now on, we will considef(E) as a subset @ (E), thus identifyinga
C(E) with (a, [0]) € G(E); in particular, we write [0] and [1] instead ¢f0], [0])
and([1], [0]), respectively. Note thatwe thenhawe b) = a — bfora, b € C(E).

6. PROPERTIES OF A PSEUDOEFFECT ALGEBRA AND ITS
REPRESENTING GROUP

We check properties that are preserved fromoegroup G with positive
elementu in the pseudoeffect algebi&(G, u) (see Definition 2.1) and from a
pseudoeffect algebr& fulfiling (RDP;) in the representing groug(E) (see
Theorem 5.7).

6.1. Lattice order and Riesz properties

Proposition 6.1. Let G be a po-group with positive element u.

(i) Ifthen G is an¢-group, thenl' (G, u) is also lattice-ordered.
(i) Let G be directed. If G has one of the properties (RIP), (RDERDP),
(RDPy), or (RDR,), thenT'(G, u) has the equally denoted property.

In the other direction, we have the following.
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Proposition 6.2. Let E be a pseudoeffect algebra fulfiling (RDPThen also
G(E) fulfils (RDP,).

Proof: Letay, ay, by, b, € G(E) be positive elements @ (E) such thata; +
a=b;+by. Let ag=[al,...,al]l,ax=[al ...,87%],b; =[b],..., D],
by = [b?, ..., b2], wherea], ..., b2 € E.ByLemma5.3, theread,, ..., d?
E such that

diy -~ di, dfy - df, - &
dg - dim dF - dG & &
d, - di, dify - df, - &
a3 - o di - df - &
\2 AN 2
bl ... bt B2 ... B2

and such that every two elements in this diagram fulfil¢ber-condition if one
of them is placed further up and further right than the other one.
Define nowdy = [d],, ..., d}, ..., d}, ..., d5] and in a similar way also

02, 03, 04. Because of the commutativity conditions, we have then

01 02 — a1

03 04 — a

Lol

b1 by

Now let0< x <0, and 0< y < 03. Soxr + ¢’ = 0, for somex’ € C(E), and we
may apply Lemma 5.3 to this equation to conclude thatepresentable as a word
such that every element in it lies below some elememLinThe same applies to
y andos.

Now for everyx, y € E such thatx lies below an element occurring in the
word 9, andy lies below an element occurring i, we havex + y = y + x. We
conclude that andy commute. So we have proved com 93, which means that
(RDPy) holds inG(E). O

Proposition 6.3. Let E be a pseudoeffect algebra fulfilling (RDPThe embed-
ding:e: E — G(E), a+— ([a], [0]) preserves infima and suprema.

Proof: Leta, b € Esuchthaa A bexists. Asg is order-preservingg(a A b) <
te(@), te(b), that is, under the above identification@fE) andG(E)™, [a A b] <
[a], [b]. Suppose an element ¢ E) to be a lower bound ofd] and |b], that is,
(x,y) =< [a], [b] for someg, y € C(E).
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Because by Propositions 6.2 and 4.2(i), (RIP) hold&ig), we may conclude
from x, y <[a] + v, [b] +n that, for somec € G(E)*, we haver < c+ 9 <
[a] + v, [b] + v, which meansy, y) < ¢ < [a], [b].

As ¢ = [c] for somec € E, we have fromc < a, b thatc < a A b, and so
(x,9) <[c] <[aADb].ltfollowsthat[a A b] =[a] A [b]. So we have shown that
tg preserves infima. _

Letnowa, b € E such thafs v b exists. Choosa, b € E such thai + a =
b+b=avb; then (g(d)=—we(@)+e(@vb) and g(b)=—ie(b)+
te(a v b). We claima A b = 0. Indeed, suppose< a, bforsomex € E;then, by
Lemma 1.6(v), we conclude that+ X, b+ x <av b =y + x for somey € E,
soa, b < yanda v b < y;itfollowsthat@v b) + x < y+ x = a v bandfinally
x = 0. So

0=te(@Ab) = te(@ A te(b) = [—ie(@) +te(@ v b)] A [—te(b) + (@ Vv b)]
and it follows thatg(a v b) = tg(a) Vv tg(b). Soce also preserves supreman

Proposition 6.4. Let E be a pseudoeffect algebra fulfilling (RDPThen the
following statements are equivalent.

() E fulfils (RDR).

(B) E is lattice-orderded.

(y) G(E) fulfils (RDR).
(8) G(E) is an¢-group.

Proof: As E fulfils (RDPy), we have by Proposition 3.3(ii) th&t fulfils (RDP,)
iff E is lattice-ordered. By Proposition 4.2(ii), we have tG4E) fulfils (RDP)
iff G(E) is lattice-ordered. By Proposition 6.1(i),df(E) fulfils (RDP,), then so
doesE.

Now let E fulfil (RDP;). Givenay, ay, by, b, € G(E) such thata; + a, =
b1 + by, we construct in the same manner as in the proof of Proposition 6.2
elementso,, 02, 03, 04, With the only difference that now the infimum of any
element ofE occuring ind, and any element occuring iy is required to be 0.
This is easily done by modifying the proofs of the Lemmas 3.2(i), 3.9, and 5.3,
replacing thecom- by the zero-infimum condition.

Because by Proposition 6.3 the relation of having a zero infimum is preserved
from E in G(E), and because it is in additive iagroups, we conclude that A
93 =0. So (RDR) holds inG(E). O

We conclude with an example showing that, given a unital grépj, if
(RIP) holds inI'(G, u), it does not necessarily follow that (RIP) also hold€in

Example 6.5. Let G be the product of the grouf of integers and the group
Zo = 7Z mod 2, that isG = Z x Z,. Define, foray, ap, by, by € Z,

(al, az) < (bl, bz) iff a; < b1 Oora; = b1 andaz = bg.
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ThenG is apo-group with strong uniti = (2, 0), andl’(G, u) is the diamond from
Example 3.7. As was proved thefgG, u) fulfils (RIP), butG does not, as is seen,
e.g., from the inequality (@), (O, 1) < (1, 0), (1, 1), which has no interpolant.

6.2. Commutativity

Proposition 6.6. Let G be a po-group with positive element u. If G is Abelian,
thenI"(G, u) is also commutative.

Proposition 6.7. Let E be a pseudoeffect algebra fulfilling (RDAf E is com-
mutative, ther(E) is also commutative.

Proof: Suppose first that, b € G(E)*. By Lemma 5.4(iv), there is a unique
¢ € G(E)* suchthata + b = ¢ + a. By the proof of that lemma, we see thatif
is commutative, then = b.

Because by Lemma 5.6,(E)™ generatesj(E), we conclude tha@(E) is
commutative. O

6.3. Linearity

Proposition 6.8. Let G be a po-group with positive element u. If G is linearly
ordered, therT'(G, u) is also linearly ordered.

Proposition 6.9. Let E be a pseudoeffect algebra fulfilling (RDRAf E is lin-
early ordered, the(E) is also linearly ordered.

Proof: We prove first that every two elements frdiE)*™ are comparable. If
0 < a, b < [1], this follows by assumption. Suppose now that every two elements
fromG(E)* each of which is the sum of not more than- 1 elements from the unit
interval are comparable, wheme> 2, and leta = [ag, ..., a,], b =[by, ..., by],
whereay, ..., ay, by, ..., by € E. Toseethattheaandb are also comparable, we
checkthecass < byandfa,...,an] > [by, ..., by]. Choose, s € G(E)*" such
that [n] =[a4] + vand g, ..., a] = s +[by, ..., by]. Thene < [1], and from
s <[a&, ..., an], we see by (RDP, which holds inG(E) by Proposition 6.4(i),
thats is the sum oh — 1 elements of the unit interval. S@mnds are comparable,
which menas thatt =[a1] + s+ [by, ..., byl and b =[as] + v+ [ba, ..., by]
also are. The claim follows, by induction.

Now suppose two elements frof{E) to be given. Because by Lemma 5.6,
G(E) =G(E)"—G(E)" = —G(E)™ + G(E)*, we may suppose these elements to
have the formn — b and—c + 0, respectively, for soma, b, ¢, 0 € G(E)™". But
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a — b and—c 4 9 are comparable iff + a ando + b are comparable, and this is
the case. O

6.4. Archimedeanicity

We introduce archimedeanicity for pseudoeffect algebras.

Definition 6.10. A pseudoeffect algebreE( +, 0, 1) is said to beéArchimedean
if, for everya € E, the existence afiafor everyn > 1 impliesa = 0.

We note that the algebra from Example 2.3 is non-Archimedian: There, we
have than (0, 0, 1) is defined for every > 1.

But we see that the following holds.

Proposition 6.11. Let E be as-complete lattice pseudoeffect algebra. Then E is
Archimedean.

Proof: Supposea € E andna to be defined for any > 1. As in the proof
of Proposition 3.11, we concludg/(, ma) + a = \/,,(ma+ a) = \/,,ma hence
a=0. D

For groups, we shall use the following definition of Archimedeanicity.

Definition 6.122 A po-group G; +, <) is said to beArchimedearif, for every
a,b e G,na < bforeveryn > 1 impliesa < 0.

Proposition 6.13. Let (G, u) be a unital po-group such that G is Archimedean.
ThenI'(G, u) is Archimedean and commutative.

Proof: That under the assumptions @) I'(G, u) is Archimedean is obvious.
Moreover, becaus®& possesses a strong unit, it is directed, and in this case we
know by Fuchs (1963), Chapter V.1.G and Corollary V.20, taas Abelian; so
I'(G, u) is commutative. O

We do not yet know if in general Archimedeanicity of a pseudoeffect algebra
E fulfilling (RDP,) implies the same property for the representing gré(i),
and so by Proposition 6.13, also commutativity. But we note the following.

Proposition 6.14. Let E be alinear, Archimedean pseudoeffect algebra fulfilling
(RDPy). Then E is commutative, agi{E) is Archimedean and Abelian.

2The property defined here is called by some autlorspletely integrally closgdor example, in
Fuchs (1963).
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Proof: By Proposition 6.9G(E) is linearly ordered.

Leta, b € G(E) andna < b for all n > 1. We have to show that < 0. But
if a < 0, we are done; so suppoae> 0, in which case we have to proge= 0.

If b <[1], a = 0 follows from the Archimedeanicity oE. Let us assume
thata = 0O follows wheneveb is the sum ok — 1 elements of the unit interval,
wherek > 2. Supposena < b =b; +---+ by for all n. Thenna— by < b; +
-+ + by_1, from which by assumption it follows thata — by < 0; this means
na < by for n, so we have, again by assumptiarns= 0.

So G(E) is Archimedean. As it is a directed group, we again know by
Fuchs (1963), Chapter V.1.G and Corollary V.20, that it is Abelian.ESts
commutative. O

7. CATEGORICAL ISOMORPHISM OF PSEUDOEFFECT
ALGEBRAS AND po-GROUPS WITH THE RIESZ PROPERTY

We shall show that pseudoeffect algebras and updgroups, both fulfilling
(RDPy), are categorically equivalent.

Definition 7.1. Let(E;+, 0, 1) be a pseudoeffect algebra. Then a p&k; (f), ()
of a unital po-group group G, u) and a homomorphismg: (E;+,0,1) —
(G;+, <, u) is called auniversal groupfor E if, for every homomorphisn :
(E;+,0,1)—(H; +, <, v) of E into a unitalpo-group H, v) there is a homomor-
phismk : (G; +, <,u)—(H; +, <, v) such thah = k o (g.

Theorem 7.2. Let(E;+, 0, 1) be a pseudoeffect algebra fulfilling (RBP

() ((G(E), [1], tg), wheretg has been defined in Definition 5.5, is a uni-
versal group for E.

(i) Lete: (E;+,0g, 1g) — (F; 4+, Og, 1) be a homomorphism of E into
another pseudoeffect algebra fulfilling (RPDPThen there is a unique
homomorphisny: (G(E), [1e] — (G(F), [1¢]) of unital po-groups such
that the following diagram commutes.

E 5 F
ted LF
G(E) 5 G(F)

Proof: (i) Let H be apo-group,v be a strong unit oH, andh: (E; +,0, 1) —
(H; +, <, v) be ahomomorphism; that is(E) € H™, + is preservedh(0) is the
group zero, anth(1) = v.
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As tg: E — I'((G(E), [1]), a — [a], is bijective by Theorem 5.7, we may
define

k': T'(G(E),[1]) — H, [a] — h(a).

Obviously,k! o tg = h, k! preserves, andk([1]) = h(1) = v.
We may extend! to G(E)* by requiring

k*: g(E)+ — H,[a1,...,an] — h(ag) + - - + h(an).

This is possible because directly similar words, (.., Xm) and &, ..., Xp +
Xp+1s - - - » Xm), Wherexy, ..., Xm € E, m> 1, and 1< p < m, are both mapped
toh(x1) + - - - + h(Xm).

By constructionk™ preservest also.

We may further extendl™ to G(E) by requiring

ki G(E) = H, (a,b)— k*(a) -kt (b)

For, leta, b, ¢, 0 € C(E) and supposéa, b) = (¢, 0). That means, in view of
Definition 5.5, @, b) ~ (¢, 0), that is,a + 0, = ¢ + b, where?,, is subject to
the conditionb + 0, = 0 + b. So we havek™(a) + k™ (0p) = k*(c) + k™ (b),
andk™(b) + k*(9,) = kT (0) + k™ (b). Both equations combined givek™ (b) +
kt(®) = k*(0p) — kt(b) = —k*(a) + k*(¢), that is,kt(a) — k*(6) = k*(c) —
k*(0).

It remains to show thak is a homomorphism. We first check thatpre-
servest. As kt does so, this is the case the for positive elements. Now let again
a, b, c,0 € C(E). Then we have

k({a, b) + (¢, 0)) = k({a + ¢, 0 + b))
= k(a) + k(cp) — k(b) — k(d)
= k(a) — k(b) + k(c) — k(D)
= k((a, b)) + k((¢c, 9)).

Secondk preserves the order; far(E) € H*, sok(G(E)*) = k*(G(E)*t) C H™.
Finally, we havek([1]) = k}([1]) = v.

(i) As tg 0 p: E — G(F) is a homomorphism o into G(F), the existence
of a functiony: (G(E), [1g]) — (G(F), [1¢]) such thatir o ¢ = ¥ o (g follows
from (i). The uniqueness is obvious from the proof of (i)a

Definition 7.3. Let RPE.A denote the category whose objects are the pseudoef-
fect algebras fulfilling (RDP) and whose morphisms are the homomorphisms of
these structures.

Let RPOG denote the category whose objects are the upitajroups ful-
filling (RDP;) and whose morphisms are the homomorphisms of these structures.
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Define " to be the functor fronRPOG to RPEA that maps an object
(G, u) fromRPOG toI'(G, u) according to Definition 2.1 and maps a morphism
¥ (G, u) — (H, v) from RPOG to its restriction ta' (G, u).

Define A to be the functor fronRPEA to RPOG that maps an objedE
fromRPEAto (G(E), [1]) and maps a morphisgp: E — F from RPEA to the
morphismy: G(E) — G(F) subject to the condition: o ¢ = ¢ o (.

ThatI" and A are well-defined as functors follows by construction.

Theorem 7.4. The functorsA: RPEA — RPOG andT': RPOG — RPEA
form an equivalence of categories, thatlisp A and A o I' are naturally equiva-
lent to the identity functors RPEA andRPOG, respectively.

Proof: We have to show that any obje& from RPEA is isomorphic to
'(A(E)) and that anyG from RPOG is isomorphic toA (I'(G)).

So let E be a pseudoeffect algebra fulfilling (R®P By Theorem 5.7,
I'(A(E)) =T(¢(E), [1]) = E.

Let (G, u) be a unitalpo-group that fulfils (RDF). We have to check
(G(I'(G, w), [u]) = (G, u). Now, by Theorem 5.7, the unitintervals®(T' (G, u))
and of G are isomorphic; this isomorphism is given BYG(I'(G, u)), [u]) —
(G, u), ([a], [0]) — a. By Theorem 7.2(i), we may extend this function to a
homomorphism

h: (G(I'(G, u)), [u]) — G,
([al,...,&n],[bl,...,bn])r—>a1—|—«~+am—bn—-~—b1.

We note that words with entrances frdnG, u) add up to the same element of
G iff they are similar. Indeed, for groups in which (RPFolds, we may prove
a proposition analogous to Lemma 3.9. We conclude from this that two words of
W(T'(G, u)) that sum up to the same element are similar. Clearly, similar words
add up to the same element®f

We claim thath is injective. Indeed, suppose we are givenb, ¢, 0 €
C(I'(G, u)) such thath({a, b)) = h({c, d)). Let A € G be the sum of the ele-
ments of any word representing and defineB, C, D € G similarly; then the
latter condition meané — B = C — D. It follows thatA + Dg = C + B, where
Dg is chosen such th& + Dg = D + B holds. Now we have, according to Def-
inition 5.5,b + 9 = 0 + b; hence any word representing adds up toDg. So
a+ 0y = ¢ + b, which means, by the same definitidn, b) = (c, ?).

We claim thath is also surjective. Indeedl(G, u) generate&. For, because
G fulfils (RIP), we haveforO<a < by +--- + bythata=d; +--- + dy, where
0<d; <by,...,0=<d, < b, We conclude that the unit interval & generates
the positive conés*. Moreover, sinces possesses a strong unit, it is directed,
which means, by Fuchs (1963), Proposition 11.3(a), (Batgenerates. O
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We may apply this result to the case where both the pseudoeffect algebras
and the groups are lattice-ordered.

Definition 7.5. Let LRPEA denote the category whose objects are the lattice
pseudoeffect algebras fulfilling (RIgPPand whose morphisms are the homomor-
phisms of these structures.

Let LG denote the category whose objects are the ugitabups and whose
morphisms are the homomorphisms of these structures.

DefineT to be the functor fronCG to LRPE A that maps an object3, u)
from LG to I’ (G, u) according to Definition 2.1 and maps a morphign{G, u) —
(H, v) from LG to its restriction ta" (G, u).

Define A to be the functor frolC RPEA to LG that maps an objedE from
LRPEAto (G(E), [1]) and maps a morphism: E — F from LRPEA to the
morphismy: G(E) — G(F) subject to the conditiong o ¢ = v o (g.

ThatI" andA map indeed intdRPEA and LG, respectively, follows from
Propositions 3.3(ii) and 6.4(ii). Thdf and A are functors follows again by
construction.

Theorem 7.6. The functorsA: LRPEA — LG andT': LG — LRPEA form
an equivalence of categories, thatisp A andA o I' are naturally equivalent to
the identity functors oE RPEA and LG, respectively.

Proof: This follows from Theorem 7.4. O

8. RELATIONS BETWEEN PSEUDOEFFECT AND
PSEUDO-MV ALGEBRAS

In the present section, we show how pseudo-MV algebras, which were intro-
duced in Georgescu and lorgulescu (to appear) are to be understood as a subfamily
of the class of pseudoeffect algebras. With the help of our main Theorem 5.7,
we are then able to present a new proof of the fact that pseudo-MV algebras are
intervals in¢-groups (Dvureénskij (to appear)).

Pseudo-MV algabras have been introduced in the following manner.

Definition 8.1. A structure M; ®,~,~, 0, 1), whered® is a binary,” and™ are
unary operations, and, @ are constants, is calledpseudo-MV algebraf the
following axioms hold in it.

Al) xe(y®2)=(xdYy)®Z
(A2) x®0=04x = X.

(A3) x@l=1px=1.

(A4) 1~ =0;1 =0.
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(AS) X"y ) =(x"@Yy")".

(AB) X (X" OY)=yB (Y OX)=XOYy)dy=(YOX)®X.
A7) XOX  @Y)=X®dYy)OY.

(A8) x~ =x.

Here, foranya, b, e M, we puta® b def (b-®a)".
Furthermore, we define, fa, b € M

a<ub iff a®c=Db forsome ce M.

It can be shown that for any pseudo-MV algebtg, is a lattice order (Georgescu
and lorgulescu (to appear), Proposition 1.10); the terms occurring in (A6) and (A7)
are in fact the supremum and the infimum of two elemerdady, respectively.

By replacing the total operatiah by a partial operatior-, one can consider
a pseudo-MV algebra as a pseudoeffect algebra.

Definition 8.2. Let (M; &, ,™, 0, 1) be a pseudo-MV algebra. Defireto be

the partial operation oW that is defined for elemengs b, € M iff a <y b, and

in that case, let + b £ a @ b.

Theorem8.3. Let(M;®,”,~, 0, 1)be apseudo-MV algebra. Thenthe following
holds.

@) (M;+,7,7,0, 1)is a pseudoeffect algebra.
(ii) Let< bethe order of M considered as a pseudoeffect algebra. Then this
order coincides with the original one, i.esy = <.
(i) Foranyab e M, we have

adb=(@Ab’)+b 3)

Proof:

(ii) By Dvure€enskij and Pulmannav(2000), Remark 6.4.5, we have for
anya, b € M thata <y biff, forsomec e M,a+c=b. So<y =<,
wherex< is defined according to Definition 1.5.

(i) That Eg. (3) holds in a pseudo-MV algebra is seen, e.g., from
DvureCenskij and Pulmannav’(2000), Proposition 6.4.8(i)) and
Exercise 3(1) of 6.4.5.

() Leta, b,c e M. To show (E1), suppose+ b and @ + b) + c are de-
fined. Therb < a+ b < ¢~, which meansthdi + cis defined. Because
wehavex Ay = (Xx® y~) @ yforx, y € M, from the assumptiores+
b <c anda < b~ it follows thataAn (b+c)" =(a+b+c) o (b+
)" = (@+b+cocob =[(a+b)Aac]ob™ = (a+b)o
b-=aAb™ =a; soa+ (b+c) is defined. Ifb + c anda + (b + ¢)
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are defined, we conclude similarly theat+ b and @ + b) + c are also
defined. Now by (A1), (E1) follows.

Becausewe hawe+ a~ = a~ + a = 1(Georgescu and lorgulescu
(to appear), Proposition 1.5) and because cancellation holds for the op-
eration (Dvureénskij and Pulmanna(2000), Proposition 6.4.4), (E2)
and (EC) follow.

To show (E3), leta + b be defined. Them, b < a+ b, and we
havea + b = ¢ + a = b + d for exactly one elememtand one element
d (Dvurecenskij and Pulmanna(2000), Remark 6.4.5 and Proposition
6.4.4), so (E3) follows.

If1+aora+ lisdefineda <0, i.e.,a=0. So (E4) follows. O

We are now able to give a new, completely different proof of the main result
of Dvurecenskij (to appear).

Theorem8.4. Let(M;®,”,~, 0, 1)be apseudo-MV algebra. Then there igan
group(G; +, <)with strong unitu suchthgM; &,~,~, 0, 1)and(I"(G, u); ®,~,",
0, u) are isomorphic, where for,& € I'(G, u), we define

a®b=(a+b)Au, (4)
a =u-—a, (5)
a =-a+u. (6)
Proof: We know from Theorem 8.3 thatM;+,~,~, 0, 1) is a pseudoeffect

algebra whose order coincides with<y,. From this and from Dvuieegnskij and
Pulmannowa’(2000), Theorem 6.4.12, it follows thist as a pseudoeffect algebra
fulfils (RDPy).

So by Theorem 5.7 and Proposition 6.4 there is a uaigoup G, u) such
that M;+,~,~,0, 1) is isomorphic to{' (G, u); +,~,™, 0, u).

Here, according to the remark following Definition 2:1,~: I'(G, u) —
I'(G, u) are given by (5) and (6), respectively.

Itremainsto check that under thisisomorphign]" (G, u) — I'(G, u) asde-
fined by (4) coincides with the equally denoted operation of the pseudo-MV algebra
M. Now, foranya, b € T'(G, u),wehave®b=(a+b)Au=(@a+b)A (b~ +
b) = (a A b™) + b, wherea and+ are calculated in the group. Now the lastterm
may be equally calculated in the pseudoeffect algeb(&(u); +,~,™, 0, u). So
by Theorem 8.3(iii), the claim follows. O

Now, under certain presumptions, a pseudoeffect algebra may also be con-
sidered as a pseudo-MV algebra.
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Definition 8.5. Let (E; +, 0, 1) be a pseudoeffect algebra. L/eand\ be partial
binary operations such that, farb € E, a/b anda\b are defined iffo < a, in
which case, the conditions

a=a/b+b=b+a\b

are to be fulfilled.
Furthermore, lekE be lattice-ordered. Leb and © be the binary operations
defined fora, b € E by

aob®a/anb),

adob d=Efa\(a/\ b).

Finally, let, fora,b € E,

aeb X (b-oa).

Lemma8.6. Let(E;+,0, 1) be a pseudoeffect algebra.
@) If,fora,b e E, b < a, then we have
a\b=b"/a", @)
a/b=b"\a .

(i) Let E be lattice-ordered. If & b is defined, we have@ b =a + b.

Proof:

(i) Letb < a. Thena\b = x meansaa = b + X, so by Lemma 1.4(vilp™ =
X 4+ a~ andx = b~/a™. So the first equation of (7) follows, from which
the second is easily derivable.

(i) Let a+ b exist. So by Lemma 1.6(ivla < b~ holds. Then we have
b—-oa=b /(aAnb™)=b"/a. Fromb~/a = c it follows thatb™ =
C™ +a, and soc = a + b by Lemma 1.4(vi). This means thatd b =
(b-oa)~ =M /A =c=a+b. O

The following lemma contains the conditions under which a pseudoeffect
algebra may be considered a pseudo-MV algebra.

Proposition 8.15. Let(E;+, 0, 1) be a lattice pseudoeffect algebra. Then the
following statements are equivalent.

(@) E fulfils (RDR).

(B) E fulfils (RDBR).
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(y)Foralla,b e E,
a/(anb)y=(avb)/b. (8)
(8) Foralla,be E

a\(aAb) = (avhb)\b. 9)

If one of these statements is true, we have, fdra E

a®b=b"pa", (10)
apob=b  0a.

Proof: (¢) < (B8). This has been proved in Proposition 3.3(ii).
(B) = (y). Let E fulfil (RDP>). So froma~ + a = b~ + b, we get elements
di, ..., ds € E such that

d db — b~

d3 d4 - b

1

a- a
andd; A d3 = 0. By Lemma 1.7(i), we have; = d; + (d, Ad3) =a~ Ab~ and
similarly d4 =a A b. So by (7), we havea/(aAnb)=a/dy=d, =b™\d; =
b™\(a~ Ab7)=b™\(avb)” =(avb)/b. So (8) is proved.

(¥) = (8). Suppose (8). Using (7), it follows for arg; b € E thata\(a A
b)=(aAb)y“/a =@ vb)/a~=b~ /(@ Ab™)=b~/(aVv b)”=(aV b)\b.
So (9) holds.

(8) = (). Suppose (9), and let< b+ c. Thena = (a A b) + (a\(a A b));
we havea A b < b and, becausk + ((a Vv b)\b) =av b <b+c, alsoa\(a
b) = (aVv b)\b < c. So (RDR) is shown.

Now suppose thasj holds,and led, b € E. By (7),we havea O b = a\(a A
b)=(avb\b=b"/(a~ Ab~) =b~ @a~. This is the first equation of (10),
from which the second is easily derivable

Theorem 8.7. Let (E;+,”,7,0,1) be a lattice pseudoeffect algebra. Then
(E;®,”,~,0,1)is a pseudo-MV algebra if and only if E fulfils one of the equiv-
alent conditions of Proposition 8.7. In that case, we have fdra E

adb=(b " 0a) =@ Obh)". (11)
aOb=aob”"=boa". (12)
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Moreover, the ordek )y of E as an MV-algebra then coincides with the order
of E as a pseudoeffect algebra, and we have fdra E

anb=ao(@ob)=ac(@ob), (13)
avb=(@obob=as (boa) (14)

Proof: Let(E;®,~,”,0,1) be a pseudo-MV algebra.

We show first that the ordexy of E coincides with the original one, that
is, with <. Leta, b € E. From a<y b, it follows thatb = ¢ @ a for somec € E;
sob™ =a @c, thatis,a =b~ + (a~ A c); but this meand~ < a~ and, by
Lemma 1.6(iii),a < b. Converselya < b meansh = a + d for somed € E; so
b=a® dandhenceax <y b.

It follows for a, b € E thata + b exists iff a<y b~, in which casea + b =
a @ b. This means that the operation is derivable from the pseudo-MV algebra
M as described in Definition 8.2. So we may conclude from Deminskij and
Pulmannoa’ (2000), Theorem 6.4.11, th& as a pseudoeffect algebra fulfills
(RDPy), that is, that conditiond) of Proposition 8.7 is fulfilled.

Let us now assume that conditiong @nd ¢) of Proposition 8.7 are fulfilled,
that is, that (8) and (9) hold.

We see equally as above that the ordesf E coincides with the relatiog:
as defined in Definition 8.1 for pseudo-MV algebras.

We will now prove Eq. (11)—(14) and then every one of the axioms (A1)—(A8)
of a pseudo-MV algebra.

Let a,b,x € E. We havead®b=(b~pa)"=xiff b-@a=b"/(aA
b)=x"iff b-=x"4+aanb iff x=(@Ab™)+biff(aAb™)” =b+ x™iff
(@ vb)\b=x"iff a¥\(@~ Ab) =x~iff (a~ ©b)” = x. Thatis, (11) holds.

Now, by (11) and (10), we gea O b=(b"®a )" =bOa =aob".
That is, (12) holds.

From @A b) 4+ (aSb)=a, we concludeanb=a/(a®b)=ao @0
b), and similarly we gea A b =a\(a@ b) = a © (a @ b). So (13) is shown.

Using this result, we conclude by (11) thatvb=(a~ Ab™)" =[b~ @
(b-Qa)]"=[b-o@ob)]” =(aob)®db, and similarly we getav b=
@ Ab") " =[a" Q@ obM)] =a~0Mboa)] =ad(boa). So (14)is
shown. Now, (A4) and (A8) hold ift by (iii) and (iv) of Lemma 1.4.

Forae E, from (l@pa)+a=1,we have pa=a,soa®0=(0"©
a)” = (1o a)” =a "~ = a, which proves the first part of (A2). The second is
shown analogously.

Wehavea®d 1= (1" @a)”" =(0®a)” =(0/0)" =0~ = 1, which proves
the first part of (A3). The second is shown analogously.

Fora,b € E, we have by (11) and (12) thaa{® b™)" =boa~ =a0o
b~ = (a~ @ b™)™~, which proves (A5).
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All the expressions occurring in (A6) equal the supremura afidb. For, by
(14), we havea® (@~ O b)=ad (b Sa)=avh, hence alsb® (b~ 0 a) =
avhb. Similarly, @ob")®b=(aob)®b=avb, hence alsoifoa™) &
a=aVvhb. The expressions occurring in (A7) equal the infimumaocénd b;
for by (13), we havea 0 (a~ @ b)=a@(a@aOb)=aAnband @eb™)ob=
bo(boa)=anh.

To prove associativity, that is, (A1), several intermediate results are needed,
denoted byd0), ..., (a5). Leta,b,c,x,y € E.

Claim(a0). Froma < x <y, it follows thatx\a < y\a.
For: For somex’, we havex + x’ = y, and soa + (x\a) + X' = a + (y\a)
and k\a) + x’ = y\a.

Claim(al). The order is monotone from both sides with respeét smdo.
For: Froma < b, it follows thatb™ v x < a™ v x and, by (a0)pb™ ©x =
bYv)\x <@ v)\x=a~ox;soadx=@ Ox) " <(b"Ox) " =b®
X. Similarly, we concludex @ a < x @ b.
Moreover, froma < b it follows thatb™ < a~, sob”™ @x~ <a~ & x~; so
xQa=(@ &x7)” <(b” @&x7)” =x0ob. Similarly, we conclude thah ©
X <box.

Clam(a2). aob=<ciffb<a @ciffa<ceb™.

For: Supposea © b < c. Then for somex € E, we have 4 © b) + x =
boa +x=c. Thismeansthdt+ x=(a~ Ab)+c.Sob<(@ Ab)+c=
@ Ab)dc<a dchy(al).

Supposé < a~ @ ¢. Then again by (al), we haeeOb <a® (@ &c) =
anc<c

Similarly, we prove the equivalenceafo b < cwitha<ceb™.

Clam(a3). ad(bAarc)=(@db)ar(adc);(bveoa=(boa)Vv(coa).

Forrad (bac) <a@b,a®chy(al). Suppose <a®b,ad c. Thenby
(a2),a” o x <b,c,soa~ ®x <bAc, and again by (a2 <a® (b Ac). So
the first equation follows. The second follows from the first one, applied td—,
andc™.

Analogously we may prove the following:
Claim(a3). (banc)da=(bda)r(cda)ad(bvc)=(aob)Vv(aoc).

Claim(a4). The order is distributive.

For: By (a3) and (al), we haveAn (bvc)=(bvc)o[(bvec) @al =
bolbvey @a)v(col(bvey dal) <bo (b-®a)]vico (c-®
a)l=(aAb)v(@anac).
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Claim(ab). a@(bvc)=(@dhb)v(asc).

For: By (al), we hava @ b,a®c<ad (bVvc). Supposead b,adc <
X.Thenby(al)a=a®0<adb=<xanda~Ab=a"0o@eb)<a~ox;
similarly,a™ A ¢ < a~ @ x. So by (a3), (a4), and (al),wege (bvc)=(ad
a)Alad(bve)] =ad[a A(bve)] =ad(a”Ab)v(@ AcC)] < ad
@ ox)=avx=x.

Analogously, using (dBinstead of (a3), we may prove the following:

Claim(@5). (bvc)da=(bea)v(cea).

We finally prove the associativity @; (A1) then easily follows. That is, we
claim@ob)oc=ao(boo).

First, setd = (@a®b)” vc. Then, by (a3, @ob)od=@0obo[(@ad
b)-vcl=(@ob)oc,andao (beod)=ac[bo((@adb)"ve]=ao[(b®
(b-@a))vpboc]=ao[(aAb)vboc)]=ac@ Ablvac(bo
ol=ao(boco).

So we must showa®b)od =a©® (b® d). We havea™ < d, because
(@oObyac”<aGb<a®l=a/ie,a <[(@ad®b)ac]  =d.Soa +d~
exists.

By (a5),wehavebv (a~ +d~)=bvd v(@ +d7)=[(bvd™)/d~ +
dlv@a +d7)=[(bed™)val]l+d  and by (a5)bv(@a +d”)=a v
bv(@ +d”) =[a +((a vbpha)v(@a +d”) =a +[(boa’)vd],
sothat [pod~)va]+d =a +[(bSa’)vd~]. Because of the associa-
tivity holding in E, we may rewrite this equation in the forat + [((b@ d™) v
a )\a ]+d =a +[((boa")vd)/d~]+ d~andconcludethat(@ d™) v
a )\a =((bSa’)vd)/d~.Butthismeand{o d™) Sa  =(bSa)od™,
or@ob)od=acbod). O
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