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This paper is the continuation of the previous paper by Dvureˇcenskij and Vetterlein
(2001),Int. J. Theor. Phys.40(3). We show that any pseudoeffect algebra fulfilling a
certain property of Riesz type is representable by a unit interval of some (not necessarily
Abelian) partially ordered group. The relation of pseudoeffect to pseudo-MV algebras is
made clear, and thè-group representation theorem for the latter structure is re-proved.

With this paper, we continue the work Dvureˇcenskij and Vetterlein (2001), where
we introduced a new algebraic structure called a pseudoeffect algebra. Section and
theorem numbers continue from those of the paper mentioned above.

5. REPRESENTATION OF PSEUDOEFFECT ALGEBRAS
BY UNIT INTERVALS OF po-GROUPS

Our aim is to develop a structure theory for pseudoeffect algebras. As intervals
in po-groups served as prototypes, we ask, first, about group representations.

Now, even when assuming commutativity, it is, in spite of its importance
for the foundations of quantum mechanics, an open problem how to characterize
exactly those pseudoeffect algebras that are intervals of partially ordered groups.
On the other hand, a certain Riesz property introduced in Section 3 is a sufficient
condition; the aim of this section is to show that any pseudoeffect algebra that
fulfils the Commutational Riesz Decomposition Property [see Definition 3.1(e)]
is an interval pseudoeffect algebra.

We will use the so-called word technique, which was introduced by Baer
(1949) and Wyler (1966). It has also been successfully applied to effect-algebras
fulfilling the Riesz Interpolation Property (Ravindran, 1966) and to commutative
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e-mail: dvurecen@mat.savba.sk and vetterl@mat.savba.sk

703
0020-7748/01/0300-0703$19.50/0C© 2001 Plenum Publishing Corporation



P1: GCO/FGL P2: FOM

International Journal of Theoretical Physics [ijtp] PP048-292332 February 1, 2001 10:55 Style file version Nov. 19th, 1999

704 Dvurečenskij and Vetterlein

BCK-algebras with the relative cancellation property (see Dvureˇcenskij and
Pulmannov´a (2000), Chapter 5.2.5).

As a first step, we embed a given pseudoeffect algebra into a semigroup. The
semigroup will then be extended to apo-group.

Definition 5.1. Let (E;+, 0, 1) be a pseudoeffect algebra.

(i) A sequenceA = (a1, . . . ,an) of finite, but nonzero, length with entries
from E is called aword in E. We denote byW(E), the set of all words;
that is,

W(E)
def= {(a1, . . .,an): a1, . . . ,an ∈ E, n ≥ 1}.

We define anaddition inW(E) as the concatenation; that is,

+ : W(E)×W(E)→W(E),
((a1, . . . ,am), (b1, . . . ,bn)) 7→ (a1, . . . ,am, b1, . . . ,bn).

(ii) We call two wordsA and B of E directly similar, in symbolsA ∼ B,
if one of it has the form (a1, . . . ,an), n ≥ 2, and the other has the form
(a1, . . . ,ap + ap+1, . . . ,an), 1≤ p < n.

We call two wordsA andB similar, in symbolsA ' B, if there are
words A0, . . . , Ak, k ≥ 0, such thatA = A0 ∼ A1 ∼ · · · ∼ Ak = B. In
such a case, we say thatA andB areconnected by a chain of length k.

We set fora1, . . . ,an ∈ E, n ≥ 1,

[a1, . . . ,an]
def= {A ∈W(E) : A ' (a1, . . . ,an)},

and we put

C(E)
def= {[a1, . . . ,an] : a1, . . . ,an ∈ E, n ≥ 1}.

Lemma 5.2. Let (E;+, 0, 1) be a pseudoeffect algebra.

(i) Similarity inW(E) is an equivalence relation compatible with+. With+
as the induced relation, (C(E);+) is a semigroup with the neutral element
[0].

(ii) For a1, . . . ,an, b ∈ E, n ≥ 1, (a1, . . . ,an)' (b) if and only if a1+ · · · +
an exists and equals b.

Proof:

(i) By construction,' is an equivalence relation.
From A1 ' A andB1 ' B, it follows that A1+ B1 ' A+ B, so+

is definable inC(E).
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AsW(E) is associative, so isC(E), that is,C(E) is a semigroup. It
has [0] as a neutral element, because, for example, [a1, . . . ,an] + [0] =
[a1, . . . ,an, 0] = [a1, . . . ,an].

(ii) If for a word (x1, . . . , xm) the sum of its elementsx1+ · · · + xm exists, the
same is true for any word directly similar to (x1, . . . , xm), and the sums
are equal. So the “only if” part follows by induction on the minimal length
of a chain by which (b) and (a1, . . . ,an) are connected.
The “if” part is obvious. ¤

We note that (ii) of this lemma has been proved by Baer (Baer, 1949,
Theorem 1) in a much more general context.

We will now prove the crucial lemma needed for the representation theorem.
For the special notation used herein, see the paragraph preceding Lemma 3.9.

Lemma 5.3. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1). Let

(a1, . . . ,am) ' (b1, . . . ,bn),

where m, n,≥ 1. Then there are elements d11, . . . ,dmn ∈ E such that

d11 · · · d1n → a1
...

...
...

dm1 · · · dmn → am

↓ ↓
b1 · · · bn

and such that, for1≤ i < m, 1≤ j < n, we have

di+1, j + · · · + dmj com di, j+1+ · · · + din.

Proof: The proof is by induction on the minimal lengthk of a chain that connects
(a1, . . . ,am) and (b1, . . . ,bn).

If k = 0, we have (a1, . . . ,am) = (b1, . . . ,bn) and the elements in the scheme

a1 0 · · · 0 → a1

0 a2 · · · 0 → a2
...

...
...

...
...

0 0 · · · am → am

↓ ↓ ↓
a1 a2 · · · am

obviously fulfil the statements.
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Suppose the statement holds fork− 1, k ≥ 1; we have to prove that it then
holds also fork. So letA = (a1, . . . ,am) andB = (b1, . . . ,bn) be connected by a
chain of lengthk, sayA = A0 ∼ · · · ∼ Ak = B.

There are two possibilities for howAk = B = (b1, . . . ,bn) is constructed
from Ak−1.

1. Let Ak−1 = (b1, . . . ,b1
p, b

2
p, . . . ,bn), 1≤ p ≤ n, and bp = b1

p + b2
p.

Then, by hypothesis there are elements inE according to the scheme

d11 · · · d1
1p d2

1p · · · d1n → a1

...
...

...
...

...

dm1 · · · d1
mp d2

mp · · · dmn → am

↓ ↓ ↓ ↓
b1 · · · b1

p b2
p · · · bn,

(1)

such that the sums of elements placed below and right from any element
fulfil the com-relation. Consider now the scheme

d11 · · · d1
1p + d2

1p · · · d1n

...
...

...
dm1 · · · d1

mp+ d2
mp · · · dmm.

Here the lines still sum up toa1, . . . ,am, and the unchanged columns
clearly sum up as before tob1, . . . ,bp−1, bp+1, . . . ,bn. Because of the
com-relations, we have that any element in (1) commutes with any other
that is placed further up and right. So thepth column also adds up to what
it should:

bp = b1
p + b2

p = d1
1p + · · · + d1

mp+ d2
1p + · · · + d2

mp

= d1
1p + d2

1p + d1
2p + · · · + d1

mp+ d2
2p + · · · + d2

mp

= · · ·
= d1

1p + d2
1p + d1

2p + d2
2p + · · · + d1

mp+ d2
mp.

Now the only new conditions concerning thecom-relation are the follow-
ing, where 1≤ j < m:

d2
j+1,p + d2

j+1,p + · · · + d1
mp+ d2

mp comdj,p+1+ · · · + djn. (2)

By the same reasoning as before, the first term in (2) is equal to (d1
j+1,p +

· · · + d1
mp)+ (d2

j+1,p + · · · + d2
mp). Here, we know by hypothesis that both

the first term in brackets and the second one fulfil thecom-condition
together with the second term in (2). Now by Lemma 3.2(i), (2) follows.
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2. Let Ak−1 = (b1, . . . ,bp + bp+1, . . . ,bn), 1≤ p < n. Then by hypothesis
there are elements inE according to the scheme

d11 · · · e1 · · · d1n → a1
...

...
...

...
dm1 · · · em · · · dmn → am

↓ ↓ ↓
b1 · · · bp + bp+1 · · · bn,

such that the sums of elements placed below and right from any element
fulfil the com-relation. Lemma 3.9 applied to

bp + bp+1 = e1+ · · · + em

gives elementsd1p, d1,p+1, . . . ,dmp, dm,p+1 ∈ E, such that

d1p d1,p+1 → e1
...

...
...

dmp dm,p+1 → em

↓ ↓
bp bp+1

and for 1≤ j < m,

dj+1,p + · · · + dmp com dj,p+1.

Then we have
d11 · · · d1p d1,p+1 · · · d1n → a1
...

...
...

...
...

dm1 · · · dmp dm,p+1 · · · dmn → am

↓ ↓ ↓ ↓
b1 · · · bp bp+1 · · · bn.

As a sum when deleting any summand from it gets smaller, and as the
com-relation is additive by Lemma 3.2(i), we see that the conditions con-
cerning thecom-relation are again preserved herein.¤

With the help of Lemma 5.3, we will now check for the semigroupC(E) the
properties that are necessary and sufficient for extending it to apo-group whose
positive cone it is. The extension itself is described in the subsequent Definition
5.5 and Lemma 5.6.

Lemma 5.4. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1). Then
C(E) is a semigroup such that the following hold:

(i) [0] is a neutral element.
(ii) Leta,b ∈ C(E). Froma+ b = [0], it follows thata = b = [0].
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(iii) Let a,b, c ∈ C(E). From a+ b = a+ c, it follows thatb = c; from
b+ a = c+ a, it follows thatb = c.

(iv) For any paira,b ∈ C(E), there is ac ∈ C(E) such thata+ b = c+ a,
and there is ad ∈ C(E) such thata+ b = b+ d.

Proof: ThatC(E) is a semigroup fulfilling (i) has been proved in Lemma 5.2(i).
Part (ii) follows from Lemma 5.2(ii) and Lemma 1.4(ii).

For part (iii), we may supposea = [a], and let b = [b1, . . . ,bm], c =
[c1, . . . , cn]. So we will show that (a, b1, . . . ,bm) ' (a, c1, . . . , cn) implies
(b1, . . . ,bm) ' (c1, . . . , cn); then the first part will follow, and the second one
is proved analogously.

By our assumption, there are, by Lemma 5.3, elements inE according to the
following scheme:

d d1 · · · dn → a
e1 e11 · · · e1n → b1
...

...
...

...
em em1 · · · emn → bm

↓ ↓ ↓
a c1 cn,

where for 1≤ j < i ≤ m, 1≤ k ≤ n, we haveei + ejk = ejk + ei , and for 1≤
k < i ≤ m, 1≤ j < l ≤ n, we haveei j + ekl = ekl + ei j , and for 1≤ i ≤ m,
1≤ j < k ≤ n, we have ei j + dk = dk + ei j . Now, a = d + d1+ · · · + dn =
d + e1+ · · · + em impliesd1+ · · · + dn = e1+ · · · + em. Using this and the com-
mutativity relations, we get

(b1, . . . ,bm) ' (e1, e11, . . . ,e1n, . . . ,em, em1, . . . ,emn)

' (e1, . . . ,em, e11, . . . ,em1, . . . ,e1n, . . . ,emn)

' (d1, . . . ,dn, e11, . . . ,em1, . . . ,e1n, . . . ,emn)

' (d1, e11, . . . ,em1, . . . ,dn, e1n, . . . ,emn)

' (c1, . . . , cn).

In case of (iv), we will prove the first part only; the second is shown analo-
gously. Moreover, we suppose thata = [a] andb = [b]; the claim then follows by
an easy induction argument. So what we will show is that there is a wordc such
that (a, b) = c+ (a).

By (RDP1) we have for somed1, . . . ,d4 ∈ E,

d1 d2 → a
d3 d4 → a∼

↓ ↓
b− b.
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So there are elementsd′2, d
′
4 ∈ E such that (a, b) = (d1+ d2, d2+ d4) ∼ (d′2+

d1, d2, d4) ' (d′2,a+ d4) = (d′2, d
′
4+ a) ∼ (d′2, d

′
4)+ (a), where we used the fact

that because ofd4 ≤ a∼ and Lemma 1.6(iv),a+ d4 exists. ¤

Definition 5.5. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1). In
view of Lemma 5.4, we may define, for anya,b ∈ C(E),ab to be the unique
element such thata+ b = b+ ab.

Define forC(E)× C(E) the binary operation+ by

(a,b)+ (c,d)
def= (a+ cb,d+ b)

for a,b, c,d ∈ C(E).
Define forC(E)× C(E)

(a,b) ≈ (c,d)
def↔ a+ db = c+ b,

〈a,b〉 def= {(c,d) : (c,d) ≈ (a,b)},
G(E)

def= {〈a,b〉 : a,b ∈ C(E)},
G(E)+ def= {〈a, [0]〉: a ∈ C(E)},
ιE: E → G(E), a 7→ 〈[a], [0]〉.

Lemma 5.6. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1). Then
the relation≈onC(E)× C(E) is an equivalence relation that is compatible with+.
With+ as the derived operation andG(E)+ as the positive cone,(G(E);+,≤) is
a po-group. We haveG(E) = G(E)+ − G(E)+ = −G(E)+ + G(E)+.

Now,ε: C(E)→ G(E),a 7→ 〈a, [0]〉 establishes a semigroup isomorphism
betweenC(E) andG(E)+.

Proof: This lemma is a consequence of Lemma 5.4. For the details of the proof,
see Fuchs (1965), Theorem II.4.¤

We arrive at our main theorem.

Theorem 5.7. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1). Then
ιE: E→ G(E),a 7→ 〈[a], [0]〉 determines an isomorphism between(E;+, 0, 1)
and (0(G(E), 〈[1], [0]〉);+, 〈[0], [0]〉, 〈[1], [0]〉), where〈[1], [0]〉 is a strong unit
of G(E).

In particular, E is an interval pseudoeffect algebra.

Proof: ιE is injective. Indeed, fora, b ∈ E, 〈[a], [0]〉 = 〈[b], [0]〉 implies [a] =
[b] by the injectivity ofε from Lemma 5.6, and this impliesa = bby Lemma 5.2(ii).
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710 Dvurečenskij and Vetterlein

The image ofιE is0(G(E), 〈[1], [0]〉). Indeed, any positive element ofG(E)
is of the form〈a, [0]〉 for somea ∈ C(E) by the surjectivity ofε from Lemma 5.6.
Now, 〈a, [0]〉 ≤ 〈[1], [0]〉 means for some other positive element〈b, [0]〉, where
b ∈ C(E), that〈a, [0]〉 + 〈b, [0]〉 = 〈[1], [0]〉. But thena+ b = [1], because, by
Lemma 5.6,ε is a semigroup isomorphism. It follows by Lemma 5.2(ii) that
a = [a],b = [b] for somea, b ∈ E, that is,〈a, [0]〉 = ιE(a).

Now, ιE: E→ 0(G(E), 〈[1], [0]〉) is an isomorphism with respect to+. In-
deed, fora, b ∈ E,a+ bexists inE and equalsc iff ( a, b) ∼ (c) iff [ c] = [a] + [b]
iff 〈[c], [0]〉 = 〈[a], [0]〉 + 〈[b], [0]〉 iff ιE(c) = ιE(a)+ ιE(b). Here we used again
the fact thatε from Lemma 5.6 is a semigroup isomorphism.

It remains to show that〈[1], [0]〉 is a strong unit ofG(E). BecauseG(E) =
G(E)+ − G(E)+ holds and becauseG(E)+ is isomorphic toC(E), it is suffi-
cient to show that anya = [a1, . . . ,an] ∈ C(E) lies below a multiple of [1]. By
Lemma 5.4(iv), we conclude that[

1, . . . ,1︸ ︷︷ ︸
n times

] = [a1,a
∼
1 , . . . ,an,a

∼
n

] = [a1, . . . ,an] + b for someb ∈ C(E),

which means
a ≤ [1] + · · · + [1]︸ ︷︷ ︸

n times

. ¤

From now on, we will considerC(E) as a subset ofG(E), thus identifyinga ∈
C(E) with 〈a, [0]〉 ∈ G(E); in particular, we write [0] and [1] instead of〈[0], [0]〉
and〈[1], [0]〉, respectively. Note that we then have〈a,b〉 = a− b fora,b ∈ C(E).

6. PROPERTIES OF A PSEUDOEFFECT ALGEBRA AND ITS
REPRESENTING GROUP

We check properties that are preserved from apo-group G with positive
elementu in the pseudoeffect algebra0(G, u) (see Definition 2.1) and from a
pseudoeffect algebraE fulfilling (RDP1) in the representing groupG(E) (see
Theorem 5.7).

6.1. Lattice order and Riesz properties

Proposition 6.1. Let G be a po-group with positive element u.

(i) If then G is aǹ -group, then0(G, u) is also lattice-ordered.
(ii) Let G be directed. If G has one of the properties (RIP), (RDP0), (RDP),

(RDP1), or (RDP2), then0(G, u) has the equally denoted property.

In the other direction, we have the following.
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Proposition 6.2. Let E be a pseudoeffect algebra fulfilling (RDP1). Then also
G(E) fulfils (RDP1).

Proof: Let a1,a2,b1,b2 ∈ G(E) be positive elements ofG(E) such thata1+
a2 = b1+ b2. Let a1 = [a1

1, . . . ,a
1
k ],a2 = [a2

1, . . . ,a
2
l ],b1 = [b1

1, . . . ,b
1
m],

b2 = [b2
1, . . . ,b

2
n], wherea1

1, . . . ,b
2
n ∈ E. By Lemma 5.3, there ared1

11, . . . ,d
4
ln ∈

E such that
d1

11 · · · d1
1m d2

11 · · · d2
1n → a1

1
...

...
...

...
...

d1
k1 · · · d1

km d2
k1 · · · d2

kn → a1
k

d3
11 · · · d3

1m d4
11 · · · d2

1n → a2
1

...
...

...
...

...
d3

l1 · · · d3
lm d4

l1 · · · d4
ln → a2

l

↓ ↓ ↓ ↓
b1

1 · · · b1
m b2

1 · · · b2
n

and such that every two elements in this diagram fulfil thecom-condition if one
of them is placed further up and further right than the other one.

Define nowd1 = [d1
11, . . . ,d

1
1m, . . . ,d

1
k1, . . . ,d

1
km] and in a similar way also

d2,d3,d4. Because of the commutativity conditions, we have then

d1 d2 → a1

d3 d4 → a2

↓ ↓
b1 b2.

Now let 0≤ x ≤ d2 and 0≤ y ≤ d3. Sox+ x′ = d2 for somex′ ∈ C(E), and we
may apply Lemma 5.3 to this equation to conclude thatx is representable as a word
such that every element in it lies below some element ind2. The same applies to
y andd3.

Now for everyx, y ∈ E such thatx lies below an element occurring in the
wordd2 andy lies below an element occurring ind3, we havex + y = y+ x. We
conclude thatx andy commute. So we have provedd2 comd3, which means that
(RDP1) holds inG(E). ¤

Proposition 6.3. Let E be a pseudoeffect algebra fulfilling (RDP1). The embed-
ding ιE: E 7→ G(E),a 7→ 〈[a], [0]〉 preserves infima and suprema.

Proof: Leta, b ∈ E such thata ∧ bexists. AsιE is order-preserving,ιE(a ∧ b) ≤
ιE(a), ιE(b), that is, under the above identification ofC(E) andG(E)+, [a ∧ b] ≤
[a], [b]. Suppose an element ofG(E) to be a lower bound of [a] and [b], that is,
〈x,y〉 ≤ [a], [b] for somex,y ∈ C(E).
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Because by Propositions 6.2 and 4.2(i), (RIP) holds inG(E), we may conclude
from x,y ≤ [a] + y, [b] + n that, for somec ∈ G(E)+, we havex ≤ c+ y ≤
[a] + y, [b] + y, which means〈x,y〉 ≤ c ≤ [a], [b].

As c = [c] for somec ∈ E, we have fromc ≤ a, b that c ≤ a ∧ b, and so
〈x,y〉 ≤ [c] ≤ [a ∧ b]. It follows that [a ∧ b] = [a] ∧ [b]. So we have shown that
ιE preserves infima.

Let nowa, b ∈ E such thata ∨ b exists. Choosēa, b̄ ∈ E such thata+ ā =
b+ b̄ = a ∨ b; then ιE(ā) = −ιE(a)+ ιE(a ∨ b) and ιE(b̄) = −ιE(b)+
ιE(a ∨ b). We claimā ∧ b̄ = 0. Indeed, supposex ≤ ā, b̄ for somex ∈ E; then, by
Lemma 1.6(v), we conclude thata+ x, b+ x ≤ a ∨ b = y+ x for somey ∈ E,
soa, b ≤ y anda ∨ b ≤ y; it follows that (a ∨ b)+ x ≤ y+ x = a ∨ band finally
x = 0. So

0= ιE(ā ∧ b̄) = ιE(ā) ∧ ιE(b̄) = [−ιE(a)+ ιE(a ∨ b)] ∧ [−ιE(b)+ ιE(a ∨ b)]

and it follows thatιE(a ∨ b) = ιE(a) ∨ ιE(b). SoιE also preserves suprema.¤

Proposition 6.4. Let E be a pseudoeffect algebra fulfilling (RDP1). Then the
following statements are equivalent.

(α) E fulfils (RDP2).
(β) E is lattice-orderded.
(γ ) G(E) fulfils (RDP2).
(δ) G(E) is an`-group.

Proof: As E fulfils (RDP0), we have by Proposition 3.3(ii) thatE fulfils (RDP2)
iff E is lattice-ordered. By Proposition 4.2(ii), we have thatG(E) fulfils (RDP2)
iff G(E) is lattice-ordered. By Proposition 6.1(i), ifG(E) fulfils (RDP2), then so
doesE.

Now let E fulfil (RDP2). Givena1,a2,b1,b2 ∈ G(E) such thata1+ a2 =
b1+ b2, we construct in the same manner as in the proof of Proposition 6.2
elementsd1,d2,d3,d4, with the only difference that now the infimum of any
element ofE occuring ind2 and any element occuring ind3 is required to be 0.
This is easily done by modifying the proofs of the Lemmas 3.2(i), 3.9, and 5.3,
replacing thecom- by the zero-infimum condition.

Because by Proposition 6.3 the relation of having a zero infimum is preserved
from E in G(E), and because it is in additive iǹ-groups, we conclude thatd2 ∧
d3 = 0. So (RDP2) holds inG(E). ¤

We conclude with an example showing that, given a unital group (G, u), if
(RIP) holds in0(G, u), it does not necessarily follow that (RIP) also holds inG.

Example 6.5. Let G be the product of the groupZ of integers and the group
Z2 = Z mod 2, that is,G = Z× Z2. Define, fora1,a2, b1, b2 ∈ Z,

(a1,a2) ≤ (b1, b2) iff a1 < b1 or a1 = b1 anda2 = b2.
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ThenG is apo-group with strong unitu = (2, 0), and0(G, u) is the diamond from
Example 3.7. As was proved there,0(G, u) fulfils (RIP), butG does not, as is seen,
e.g., from the inequality (0, 0), (0, 1)≤ (1, 0), (1, 1), which has no interpolant.

6.2. Commutativity

Proposition 6.6. Let G be a po-group with positive element u. If G is Abelian,
then0(G, u) is also commutative.

Proposition 6.7. Let E be a pseudoeffect algebra fulfilling (RDP1). If E is com-
mutative, thenG(E) is also commutative.

Proof: Suppose first thata,b ∈ G(E)+. By Lemma 5.4(iv), there is a unique
c ∈ G(E)+ such thata+ b = c+ a. By the proof of that lemma, we see that ifE
is commutative, thenc = b.

Because by Lemma 5.6,G(E)+ generatesG(E), we conclude thatG(E) is
commutative. ¤

6.3. Linearity

Proposition 6.8. Let G be a po-group with positive element u. If G is linearly
ordered, then0(G, u) is also linearly ordered.

Proposition 6.9. Let E be a pseudoeffect algebra fulfilling (RDP1). If E is lin-
early ordered, thenG(E) is also linearly ordered.

Proof: We prove first that every two elements fromG(E)+ are comparable. If
0≤ a,b ≤ [1], this follows by assumption. Suppose now that every two elements
fromG(E)+ each of which is the sum of not more thann− 1 elements from the unit
interval are comparable, wheren ≥ 2, and leta = [a1, . . . ,an],b = [b1, . . . ,bn],
wherea1, . . . ,an, b1, . . . ,bn ∈ E. To see that thena andb are also comparable, we
check the casea1 ≤ b1 and [a2, . . . ,an] ≥ [b2, . . . ,bn]. Chooser, s ∈ G(E)+ such
that [b1] = [a1] + r and [a2, . . . ,an] = s+ [b2, . . . ,bn]. Thenr ≤ [1], and from
s ≤ [a2, . . . ,an], we see by (RDP1), which holds inG(E) by Proposition 6.4(i),
thats is the sum ofn− 1 elements of the unit interval. Sor ands are comparable,
which menas thata = [a1] + s+ [b2, . . . ,bn] and b = [a1] + r+ [b2, . . . ,bn]
also are. The claim follows, by induction.

Now suppose two elements fromG(E) to be given. Because by Lemma 5.6,
G(E) = G(E)+−G(E)+ = −G(E)+ + G(E)+, we may suppose these elements to
have the forma− b and−c+ d, respectively, for somea,b, c,d ∈ G(E)+. But
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a− b and−c+ d are comparable iffc+ a andd+ b are comparable, and this is
the case. ¤

6.4. Archimedeanicity

We introduce archimedeanicity for pseudoeffect algebras.

Definition 6.10. A pseudoeffect algebra (E;+, 0, 1) is said to beArchimedean
if, for everya ∈ E, the existence ofna for everyn ≥ 1 impliesa = 0.

We note that the algebra from Example 2.3 is non-Archimedian: There, we
have thatn (0, 0, 1) is defined for everyn ≥ 1.

But we see that the following holds.

Proposition 6.11. Let E be aσ -complete lattice pseudoeffect algebra. Then E is
Archimedean.

Proof: Supposea ∈ E and na to be defined for anyn ≥ 1. As in the proof
of Proposition 3.11, we conclude (

∨
m ma)+ a =∨m(ma+ a) =∨m ma, hence

a = 0. ¤

For groups, we shall use the following definition of Archimedeanicity.

Definition 6.12. A2 po-group (G;+,≤) is said to beArchimedeanif, for every
a, b ∈ G, na≤ b for everyn ≥ 1 impliesa ≤ 0.

Proposition 6.13. Let (G, u) be a unital po-group such that G is Archimedean.
Then0(G, u) is Archimedean and commutative.

Proof: That under the assumptions onG, 0(G, u) is Archimedean is obvious.
Moreover, becauseG possesses a strong unit, it is directed, and in this case we
know by Fuchs (1963), Chapter V.1.G and Corollary V.20, thatG is Abelian; so
0(G, u) is commutative. ¤

We do not yet know if in general Archimedeanicity of a pseudoeffect algebra
E fulfilling (RDP1) implies the same property for the representing groupG(E),
and so by Proposition 6.13, also commutativity. But we note the following.

Proposition 6.14. Let E be a linear, Archimedean pseudoeffect algebra fulfilling
(RDP1). Then E is commutative, andG(E) is Archimedean and Abelian.

2The property defined here is called by some authorscompletely integrally closed, for example, in
Fuchs (1963).
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Proof: By Proposition 6.9.G(E) is linearly ordered.
Let a, b ∈ G(E) andna≤ b for all n ≥ 1. We have to show thata ≤ 0. But

if a < 0, we are done; so supposea ≥ 0, in which case we have to provea = 0.
If b ≤ [1],a = 0 follows from the Archimedeanicity ofE. Let us assume

thata = 0 follows wheneverb is the sum ofk− 1 elements of the unit interval,
wherek ≥ 2. Supposena< b = b1+ · · · + bk for all n. Thenna− bk < b1+
· · · + bk−1, from which by assumption it follows thatna− bk ≤ 0; this means
na≤ bk for n, so we have, again by assumption,a = 0.

So G(E) is Archimedean. As it is a directed group, we again know by
Fuchs (1963), Chapter V.1.G and Corollary V.20, that it is Abelian. SoE is
commutative. ¤

7. CATEGORICAL ISOMORPHISM OF PSEUDOEFFECT
ALGEBRAS AND po-GROUPS WITH THE RIESZ PROPERTY

We shall show that pseudoeffect algebras and unitalpo-groups, both fulfilling
(RDP1), are categorically equivalent.

Definition 7.1. Let (E;+, 0, 1) be a pseudoeffect algebra. Then a pair ((G, u), ιE)
of a unital po-group group (G, u) and a homomorphismιE: (E;+, 0, 1)→
(G ;+,≤, u) is called auniversal groupfor E if, for every homomorphismh :
(E;+, 0, 1)→(H ;+,≤, v) of E into a unitalpo-group (H, v) there is a homomor-
phismk : (G;+,≤, u)−→(H ;+,≤, v) such thath = k ◦ ιE.

Theorem 7.2. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1).

(i) ((G(E), [1]), ιE), whereιE has been defined in Definition 5.5, is a uni-
versal group for E.

(ii) Let ϕ: (E;+, 0E, 1E)→ (F ;+, 0F , 1F ) be a homomorphism of E into
another pseudoeffect algebra fulfilling (RDP1). Then there is a unique
homomorphismψ : (G(E), [1E] → (G(F), [1F ]) of unital po-groups such
that the following diagram commutes.

E
ϕ→ F

ιE↓ ιF↓
G(E)

ψ→ G(F)

Proof: (i) Let H be apo-group,v be a strong unit ofH , andh: (E;+, 0, 1)→
(H ;+,≤, v) be a homomorphism; that is,h(E) ⊆ H+,+ is preserved,h(0) is the
group zero, andh(1)= v.
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As ιE: E→ 0((G(E), [1]),a 7→ [a], is bijective by Theorem 5.7, we may
define

k1: 0(G(E), [1]) → H, [a] 7→ h(a).

Obviously,k1 ◦ ιE = h, k1 preserves+, andk1([1]) = h(1)= v.
We may extendk1 to G(E)+ by requiring

k+: G(E)+ → H, [a1, . . . ,an] 7→ h(a1)+ · · · + h(an).

This is possible because directly similar words (x1, . . . , xm) and (x1, . . . , xp +
xp+1, . . . , xm), wherex1, . . . , xm ∈ E, m≥ 1, and 1≤ p < m, are both mapped
to h(x1)+ · · · + h(xm).

By construction,k+ preserves+ also.
We may further extendk+ to G(E) by requiring

k: G(E)→ H, 〈a,b〉 7→ k+(a)− k+(b)

For, let a,b, c,d ∈ C(E) and suppose〈a,b〉 = 〈c,d〉. That means, in view of
Definition 5.5, (a,b) ≈ (c,d), that is,a+ db = c+ b, wheredb is subject to
the conditionb+ db = d+ b. So we havek+(a)+ k+(db) = k+(c)+ k+(b),
andk+(b)+ k+(db) = k+(d)+ k+(b). Both equations combined give−k+(b)+
k+(d) = k+(db)− k+(b) = −k+(a)+ k+(c), that is,k+(a)− k+(b) = k+(c)−
k+(d).

It remains to show thatk is a homomorphism. We first check thatk pre-
serves+. As k+ does so, this is the case the for positive elements. Now let again
a,b, c,d ∈ C(E). Then we have

k(〈a,b〉 + 〈c,d〉) = k(〈a+ cb,d+ b〉)
= k(a)+ k(cb)− k(b)− k(d)

= k(a)− k(b)+ k(c)− k(d)

= k(〈a,b〉)+ k(〈c,d〉).
Second,k preserves the order; for,h(E) ⊆ H+, sok(G(E)+) = k+(G(E)+) ⊆ H+.
Finally, we havek([1]) = k1([1]) = v.

(ii) As ιF ◦ ϕ: E→ G(F) is a homomorphism ofE into G(F), the existence
of a functionψ : (G(E), [1E]) → (G(F), [1F ]) such thatιF ◦ ϕ = ψ ◦ ιE follows
from (i). The uniqueness is obvious from the proof of (i).¤

Definition 7.3. LetRPEA denote the category whose objects are the pseudoef-
fect algebras fulfilling (RDP1) and whose morphisms are the homomorphisms of
these structures.

LetRPOG denote the category whose objects are the unitalpo-groups ful-
filling (RDP1) and whose morphisms are the homomorphisms of these structures.
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Define0 to be the functor fromRPOG to RPEA that maps an object
(G, u) fromRPOG to0(G, u) according to Definition 2.1 and maps a morphism
ψ : (G, u)→ (H, v) fromRPOG to its restriction to0(G, u).

Define1 to be the functor fromRPEA to RPOG that maps an objectE
fromRPEA to (G(E), [1]) and maps a morphismϕ: E→ F fromRPEA to the
morphismψ : G(E)→ G(F) subject to the conditionιF ◦ ϕ = ψ ◦ ιE.

That0 and1 are well-defined as functors follows by construction.

Theorem 7.4. The functors1:RPEA→ RPOG and0:RPOG → RPEA
form an equivalence of categories, that is,0 ◦1 and1 ◦ 0 are naturally equiva-
lent to the identity functors ofRPEA andRPOG, respectively.

Proof: We have to show that any objectE from RPEA is isomorphic to
0(1(E)) and that anyG fromRPOG is isomorphic to1(0(G)).

So let E be a pseudoeffect algebra fulfilling (RDP1). By Theorem 5.7,
0(1(E)) = 0(G(E), [1]) ∼= E.

Let (G, u) be a unitalpo-group that fulfils (RDP1). We have to check
(G(0(G, u)), [u]) ∼= (G, u). Now, by Theorem 5.7, the unit intervals ofG(0(G, u))
and of G are isomorphic; this isomorphism is given by0(G(0(G, u)), [u]) →
0(G, u), 〈[a], [0]〉 7→ a. By Theorem 7.2(i), we may extend this function to a
homomorphism

h: (G(0(G, u)), [u]) → G,

〈[a1, . . . ,am], [b1, . . . ,bn]〉 7→ a1+ · · · + am − bn − · · · − b1.

We note that words with entrances from0(G, u) add up to the same element of
G iff they are similar. Indeed, for groups in which (RDP1) holds, we may prove
a proposition analogous to Lemma 3.9. We conclude from this that two words of
W(0(G, u)) that sum up to the same element are similar. Clearly, similar words
add up to the same element ofG.

We claim thath is injective. Indeed, suppose we are givena,b, c,d ∈
C(0(G, u)) such thath(〈a,b〉) = h(〈c,d〉). Let A ∈ G be the sum of the ele-
ments of any word representinga, and defineB,C, D ∈ G similarly; then the
latter condition meansA− B = C − D. It follows thatA+ DB = C + B, where
DB is chosen such thatB+ DB = D + B holds. Now we have, according to Def-
inition 5.5,b+ db = d+ b; hence any word representingdb adds up toDB. So
a+ db = c+ b, which means, by the same definition,〈a,b〉 = 〈c,d〉.

We claim thath is also surjective. Indeed,0(G, u) generatesG. For, because
G fulfils (RIP), we have for 0≤ a ≤ b1+ · · · + bn thata = d1 + · · · + dn, where
0≤ d1 ≤ b1, . . . ,0≤ dn ≤ bn. We conclude that the unit interval ofG generates
the positive coneG+. Moreover, sinceG possesses a strong unit, it is directed,
which means, by Fuchs (1963), Proposition II.3(a), thatG+ generatesG. ¤
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We may apply this result to the case where both the pseudoeffect algebras
and the groups are lattice-ordered.

Definition 7.5. Let LRPEA denote the category whose objects are the lattice
pseudoeffect algebras fulfilling (RDP0) and whose morphisms are the homomor-
phisms of these structures.

LetLG denote the category whose objects are the unital`-groups and whose
morphisms are the homomorphisms of these structures.

Define0 to be the functor fromLG to LRPEA that maps an object (G, u)
fromLG to0(G, u) according to Definition 2.1 and maps a morphismψ : (G, u)→
(H, v) fromLG to its restriction to0(G, u).

Define1 to be the functor fromLRPEA toLG that maps an objectE from
LRPEA to (G(E), [1]) and maps a morphismϕ: E→ F from LRPEA to the
morphismψ : G(E)→ G(F) subject to the conditionsιF ◦ ϕ = ψ ◦ ιE.

That0 and1 map indeed intoLRPEA andLG, respectively, follows from
Propositions 3.3(ii) and 6.4(ii). That0 and1 are functors follows again by
construction.

Theorem 7.6. The functors1: LRPEA→ LG and0: LG → LRPEA form
an equivalence of categories, that is,0 ◦1 and1 ◦ 0 are naturally equivalent to
the identity functors ofLRPEA andLG, respectively.

Proof: This follows from Theorem 7.4. ¤

8. RELATIONS BETWEEN PSEUDOEFFECT AND
PSEUDO-MV ALGEBRAS

In the present section, we show how pseudo-MV algebras, which were intro-
duced in Georgescu and Iorgulescu (to appear) are to be understood as a subfamily
of the class of pseudoeffect algebras. With the help of our main Theorem 5.7,
we are then able to present a new proof of the fact that pseudo-MV algebras are
intervals in`-groups (Dvureˇcenskij (to appear)).

Pseudo-MV algabras have been introduced in the following manner.

Definition 8.1. A structure (M ;⊕,− ,∼ , 0, 1), where⊕ is a binary,− and∼ are
unary operations, and 0, 1 are constants, is called apseudo-MV algebraif the
following axioms hold in it.

(A1) x ⊕ (y⊕ z) = (x ⊕ y)⊕ z.
(A2) x ⊕ 0= 0⊕ x = x.
(A3) x ⊕ 1= 1⊕ x = 1.
(A4) 1∼ = 0; 1− = 0.
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(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−.
(A6) x ⊕ (x∼ ¯ y) = y⊕ (y∼ ¯ x) = (x ¯ y−)⊕ y = (y¯ x−)⊕ x.
(A7) x ¯ (x− ⊕ y) = (x ⊕ y∼)¯ y.
(A8) x−∼ = x.

Here, for anya, b,∈ M , we puta¯ b
def= (b− ⊕ a−)∼.

Furthermore, we define, fora, b ∈ M

a ≤M b iff a⊕ c = b for some c ∈ M.

It can be shown that for any pseudo-MV algebra,≤M is a lattice order (Georgescu
and Iorgulescu (to appear), Proposition 1.10); the terms occurring in (A6) and (A7)
are in fact the supremum and the infimum of two elementsx andy, respectively.

By replacing the total operation⊕ by a partial operation+, one can consider
a pseudo-MV algebra as a pseudoeffect algebra.

Definition 8.2. Let (M; ⊕,− ,∼ , 0, 1) be a pseudo-MV algebra. Define+ to be
the partial operation onM that is defined for elementsa, b,∈ M iff a ≤M b−, and

in that case, leta+ b
def= a⊕ b.

Theorem 8.3. Let(M ;⊕,− ,∼ , 0, 1)be a pseudo-MV algebra. Then the following
holds.

(i) (M ;+,−,∼, 0, 1) is a pseudoeffect algebra.
(ii) Let≤ be the order of M considered as a pseudoeffect algebra. Then this

order coincides with the original one, i.e.,≤M =≤.
(iii) For any a, b ∈ M, we have

a⊕ b = (a ∧ b−)+ b. (3)

Proof:

(ii) By Dvurečenskij and Pulmannov´a (2000), Remark 6.4.5, we have for
anya, b ∈ M thata ≤M b iff, for somec ∈ M,a+ c = b. So≤M =≤,
where≤ is defined according to Definition 1.5.

(iii) That Eq. (3) holds in a pseudo-MV algebra is seen, e.g., from
Dvurečenskij and Pulmannov´a (2000), Proposition 6.4.8(i) and
Exercise 3(1) of 6.4.5.

(i) Let a, b, c ∈ M . To show (E1), supposea+ b and (a+ b)+ c are de-
fined. Thenb ≤ a+ b ≤ c−, which means thatb+ c is defined. Because
we havex ∧ y = (x ⊕ y∼)¯ y for x, y ∈ M , from the assumptionsa+
b ≤ c− anda ≤ b− it follows thata ∧ (b+ c)− = (a+ b+ c)¯ (b+
c)− = (a+ b+ c)¯ c− ¯ b− = [(a+ b) ∧ c−] ¯ b− = (a+ b)¯
b− = a ∧ b− = a; so a+ (b+ c) is defined. Ifb+ c anda+ (b+ c)
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are defined, we conclude similarly thata+ b and (a+ b)+ c are also
defined. Now by (A1), (E1) follows.

Because we havea+ a∼ = a− + a = 1 (Georgescu and Iorgulescu
(to appear), Proposition 1.5) and because cancellation holds for the op-
eration (Dvureˇcenskij and Pulmannov´a (2000), Proposition 6.4.4), (E2)
and (EC) follow.

To show (E3), leta+ b be defined. Thena, b ≤ a+ b, and we
havea+ b = c+ a = b+ d for exactly one elementc and one element
d (Dvurečenskij and Pulmannov´a (2000), Remark 6.4.5 and Proposition
6.4.4), so (E3) follows.

If 1 + a or a+ 1 is defined,a ≤ 0, i.e.,a = 0. So (E4) follows. ¤

We are now able to give a new, completely different proof of the main result
of Dvurečenskij (to appear).

Theorem 8.4. Let(M ;⊕,− ,∼ , 0, 1)be a pseudo-MV algebra. Then there is an`-
group(G;+,≤) with strong unit u such that(M ;⊕,−,∼, 0, 1)and(0(G, u);⊕,−,∼,
0, u) are isomorphic, where for a, b ∈ 0(G, u), we define

a⊕ b = (a+ b) ∧ u, (4)

a− = u− a, (5)

a∼ = −a+ u. (6)

Proof: We know from Theorem 8.3 that (M ;+,− ,∼ , 0, 1) is a pseudoeffect
algebra whose order≤ coincides with≤M . From this and from Dvureˇcenskij and
Pulmannov´a (2000), Theorem 6.4.12, it follows thatM as a pseudoeffect algebra
fulfils (RDP2).

So by Theorem 5.7 and Proposition 6.4 there is a unital`-group (G, u) such
that (M ;+,− ,∼ , 0, 1) is isomorphic to (0(G, u);+,− ,∼ , 0, u).

Here, according to the remark following Definition 2.1,−,∼: 0(G, u)→
0(G, u) are given by (5) and (6), respectively.

It remains to check that under this isomorphism,⊕:0(G, u)→ 0(G, u) as de-
fined by (4) coincides with the equally denoted operation of the pseudo-MV algebra
M . Now, for anya, b ∈ 0(G, u), we havea⊕ b = (a+ b) ∧ u = (a+ b) ∧ (b− +
b) = (a ∧ b−)+ b, where∧and+are calculated in the groupG. Now the last term
may be equally calculated in the pseudoeffect algebra (0(G, u);+,− ,∼ , 0, u). So
by Theorem 8.3(iii), the claim follows. ¤

Now, under certain presumptions, a pseudoeffect algebra may also be con-
sidered as a pseudo-MV algebra.
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Definition 8.5. Let (E;+, 0, 1) be a pseudoeffect algebra. Let/ and\ be partial
binary operations such that, fora, b ∈ E,a/b anda\b are defined iffb ≤ a, in
which case, the conditions

a = a/b+ b = b+ a\b
are to be fulfilled.

Furthermore, letE be lattice-ordered. Let® and
®

be the binary operations
defined fora, b ∈ E by

a® b
def= a/(a ∧ b),

a

®

b
def= a\(a ∧ b).

Finally, let, fora, b ∈ E,

a⊕ b
def= (b− ® a)∼.

Lemma 8.6. Let (E;+, 0, 1) be a pseudoeffect algebra.

(i) If, for a, b ∈ E, b ≤ a, then we have

a\b = b∼/a∼, (7)

a/b = b−\a−.
(ii) Let E be lattice-ordered. If a+ b is defined, we have a⊕ b = a+ b.

Proof:

(i) Let b ≤ a. Thena\b = x meansa = b+ x, so by Lemma 1.4(vi),b∼ =
x + a∼ andx = b∼/a∼. So the first equation of (7) follows, from which
the second is easily derivable.

(ii) Let a+ b exist. So by Lemma 1.6(iv),a ≤ b− holds. Then we have
b−®a = b−/(a ∧ b−) = b−/a. From b−/a = c− it follows that b− =
c− + a, and soc = a+ b by Lemma 1.4(vi). This means thata⊕ b =
(b− ® a)∼ = (b−/a)∼ = c = a+ b. ¤

The following lemma contains the conditions under which a pseudoeffect
algebra may be considered a pseudo-MV algebra.

Proposition 8.15. Let (E;+, 0, 1) be a lattice pseudoeffect algebra. Then the
following statements are equivalent.

(α) E fulfils (RDP0).
(β) E fulfils (RDP2).
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(γ ) For all a, b ∈ E,

a/(a ∧ b) = (a ∨ b)/b. (8)

(δ) For all a, b ∈ E

a\(a ∧ b) = (a ∨ b)\b. (9)

If one of these statements is true, we have, for a, b ∈ E

a

®

b = b∼ ® a∼, (10)

a® b = b−

®

a−.

Proof: (α)⇔ (β). This has been proved in Proposition 3.3(ii).
(β)⇒ (γ ). Let E fulfil (RDP2). So froma− + a = b− + b, we get elements

d1, . . . ,d4 ∈ E such that

d1 d2 → b−

d3 d4 → b
↓ ↓
a− a

andd2 ∧ d3 = 0. By Lemma 1.7(i), we haved1 = d1+ (d2 ∧ d3) = a− ∧ b− and
similarly d4 = a ∧ b. So by (7), we havea/(a ∧ b) = a/d4 = d2 = b−\d1 =
b−\(a− ∧ b−) = b−\(a ∨ b)− = (a ∨ b)/b. So (8) is proved.

(γ )⇒ (δ). Suppose (8). Using (7), it follows for anya, b ∈ E that a\(a ∧
b) = (a ∧ b)∼/a∼ = (a∼ ∨ b∼)/a∼ = b∼/(a∼ ∧ b∼)= b∼/(a ∨ b)∼ = (a ∨ b)\b.
So (9) holds.

(δ)⇒ (α). Suppose (9), and leta ≤ b+ c. Thena = (a ∧ b)+ (a\(a ∧ b));
we havea ∧ b ≤ b and, becauseb+ ((a ∨ b)\b) = a ∨ b ≤ b+ c, alsoa\(a ∧
b) = (a ∨ b)\b ≤ c. So (RDP0) is shown.

Now suppose that (δ) holds, and leta, b ∈ E. By (7), we havea

®

b = a\(a ∧
b) = (a ∨ b)\b = b∼/(a∼ ∧ b∼) = b∼ ® a∼. This is the first equation of (10),
from which the second is easily derivable.¤

Theorem 8.7. Let (E;+,∼ ,− , 0, 1) be a lattice pseudoeffect algebra. Then
(E;⊕,∼ ,− , 0, 1) is a pseudo-MV algebra if and only if E fulfils one of the equiv-
alent conditions of Proposition 8.7. In that case, we have for a, b ∈ E

a⊕ b = (b− ® a)∼ = (a∼

®

b)−. (11)

a¯ b = a® b∼ = b

®

a−. (12)
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Moreover, the order≤M of E as an MV-algebra then coincides with the order≤
of E as a pseudoeffect algebra, and we have for a, b ∈ E

a ∧ b = a® (a

®

b) = a

®

(a® b), (13)

a ∨ b = (a® b)⊕ b = a⊕ (b

®

a). (14)

Proof: Let (E;⊕,∼ ,− , 0, 1) be a pseudo-MV algebra.
We show first that the order≤M of E coincides with the original one, that

is, with≤. Let a, b ∈ E. From a≤M b, it follows thatb = c⊕ a for somec ∈ E;
so b− = a− ® c, that is,a− = b− + (a− ∧ c); but this meansb− ≤ a− and, by
Lemma 1.6(iii),a ≤ b. Conversely,a ≤ b meansb = a+ d for somed ∈ E; so
b = a⊕ d and hencea ≤M b.

It follows for a, b ∈ E thata+ b exists iff a≤M b−, in which case,a+ b =
a⊕ b. This means that the+ operation is derivable from the pseudo-MV algebra
M as described in Definition 8.2. So we may conclude from Dvureˇcenskij and
Pulmannov´a (2000), Theorem 6.4.11, thatE as a pseudoeffect algebra fulfills
(RDP0), that is, that condition (α) of Proposition 8.7 is fulfilled.

Let us now assume that conditions (γ ) and (δ) of Proposition 8.7 are fulfilled,
that is, that (8) and (9) hold.

We see equally as above that the order≤ of E coincides with the relation≤M

as defined in Definition 8.1 for pseudo-MV algebras.
We will now prove Eq. (11)–(14) and then every one of the axioms (A1)–(A8)

of a pseudo-MV algebra.
Let a, b, x ∈ E. We havea⊕ b = (b− ® a)∼ = x iff b− ® a = b−/(a ∧

b−) = x− iff b− = x− + a ∧ b− iff x = (a ∧ b−)+ b iff ( a ∧ b−)∼ = b+ x∼ iff
(a∼ ∨ b)\b = x∼ iff a∼\(a∼ ∧ b) = x∼ iff ( a∼

®

b)− = x. That is, (11) holds.
Now, by (11) and (10), we geta¯ b = (b− ⊕ a−)∼ = b

®

a− = a® b∼.
That is, (12) holds.

From (a ∧ b)+ (a

®

b) = a, we concludea ∧ b = a/(a

®

b) = a® (a

®

b), and similarly we geta ∧ b = a\(a® b) = a

®

(a® b). So (13) is shown.
Using this result, we conclude by (11) thata ∨ b = (a− ∧ b−)∼ = [b− ®

(b−

®

a−)]∼ = [b− ® (a® b)]∼ = (a® b)⊕ b, and similarly we geta ∨ b =
(a∼ ∧ b∼)− = [a∼

®

(a∼ ® b∼)]− = [a∼

®

(b

®

a)]− = a⊕ (b

®

a). So (14) is
shown. Now, (A4) and (A8) hold inE by (iii) and (iv) of Lemma 1.4.

For a ∈ E, from (1® a)+ a = 1, we have 1® a = a−, soa⊕ 0= (0− ®
a)∼ = (1® a)∼ = a−∼ = a, which proves the first part of (A2). The second is
shown analogously.

We havea⊕ 1= (1− ® a)∼ = (0® a)∼ = (0/0)∼ = 0∼ = 1, which proves
the first part of (A3). The second is shown analogously.

For a, b ∈ E, we have by (11) and (12) that (a∼ ⊕ b∼)− = b® a∼ = a

®

b− = (a− ⊕ b−)∼, which proves (A5).
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All the expressions occurring in (A6) equal the supremum ofa andb. For, by
(14), we havea⊕ (a∼ ¯ b) = a⊕ (b

®

a) = a ∨ b, hence alsob⊕ (b∼ ¯ a) =
a ∨ b. Similarly, (a¯ b−)⊕ b = (a® b)⊕ b = a ∨ b, hence also (b¯ a−)⊕
a = a ∨ b. The expressions occurring in (A7) equal the infimum ofa and b;
for by (13), we havea¯ (a− ⊕ b) = a® (a

®

b) = a ∧ b and (a⊕ b∼)¯ b =
b

®

(b® a) = a ∧ b.
To prove associativity, that is, (A1), several intermediate results are needed,

denoted by (a0), . . . , (a5). Leta, b, c, x, y ∈ E.

Claim (a0). Froma ≤ x ≤ y, it follows thatx\a ≤ y\a.
For: For somex′, we havex + x′ = y, and soa+ (x\a)+ x′ = a+ (y\a)

and (x\a)+ x′ = y\a.

Claim (a1). The order is monotone from both sides with respect to⊕ and¯.
For: Froma ≤ b, it follows that b∼ ∨ x ≤ a∼ ∨ x and, by (a0),b∼

®

x =
(b∼ ∨ x)\x ≤ (a∼ ∨ x)\x = a∼

®
x; soa⊕ x = (a∼

®

x)− ≤ (b∼

®

x)− = b⊕
x. Similarly, we concludex ⊕ a ≤ x ⊕ b.

Moreover, froma ≤ b it follows thatb− ≤ a−, sob− ⊕ x− ≤ a− ⊕ x−; so
x ¯ a = (a− ⊕ x−)∼ ≤ (b− ⊕ x−)∼ = x ¯ b. Similarly, we conclude thata¯
x ≤ b¯ x.

Claim (a2). a¯ b ≤ c iff b ≤ a− ⊕ c iff a ≤ c⊕ b∼.
For: Supposea¯ b ≤ c. Then for somex ∈ E, we have (a¯ b)+ x =

b
®

a− + x = c. This means thatb+ x = (a− ∧ b)+ c. Sob ≤ (a− ∧ b)+ c =
(a− ∧ b)⊕ c ≤ a− ⊕ c by (a1).

Supposeb ≤ a− ⊕ c. Then again by (a1), we havea¯ b ≤ a¯ (a− ⊕ c) =
a ∧ c ≤ c.

Similarly, we prove the equivalence ofa¯ b ≤ c with a ≤ c⊕ b∼.

Claim (a3). a⊕ (b∧ c) = (a⊕ b) ∧ (a⊕ c); (b∨ c)¯ a = (b¯ a) ∨ (c¯ a).
For:a⊕ (b∧ c) ≤ a⊕ b,a⊕ c by (a1). Supposex ≤ a⊕ b,a⊕ c. Then by

(a2),a∼ ¯ x ≤ b, c, soa∼ ¯ x ≤ b∧ c, and again by (a2),x ≤ a⊕ (b∧ c). So
the first equation follows. The second follows from the first one, applied toa−, b−,
andc−.

Analogously we may prove the following:

Claim (a3′). (b∧ c)⊕ a = (b⊕ a) ∧ (c⊕ a); a¯ (b∨ c) = (a¯ b) ∨ (a¯ c).

Claim (a4). The order is distributive.
For: By (a3) and (a1), we havea ∧ (b∨ c) = (b∨ c)¯ [(b∨ c)− ⊕ a] =

(b ¯ [(b ∨ c)− ⊕ a]) ∨ (c¯ [(b∨ c)− ⊕ a]) ≤ [b¯ (b− ⊕ a)] ∨ [c¯ (c− ⊕
a)] = (a ∧ b) ∨ (a ∧ c).
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Claim (a5). a⊕ (b∨ c) = (a⊕ b) ∨ (a⊕ c).
For: By (a1), we havea⊕ b,a⊕ c ≤ a⊕ (b∨ c). Supposea⊕ b,a⊕ c ≤

x. Then by (a1),a = a⊕ 0≤ a⊕ b ≤ x anda∼ ∧ b = a∼ ¯ (a⊕ b) ≤ a∼ ¯ x;
similarly,a∼ ∧ c ≤ a∼ ¯ x. So by (a3), (a4), and (a1), we geta⊕ (b∨ c) = (a⊕
a∼) ∧ [a⊕ (b∨ c)] = a⊕ [a∼ ∧ (b∨ c)] = a⊕ [(a∼ ∧ b) ∨ (a∼ ∧ c)] ≤ a⊕
(a∼ ¯ x) = a ∨ x = x.

Analogously, using (a3′) instead of (a3), we may prove the following:

Claim (a5′). (b∨ c)⊕ a = (b⊕ a) ∨ (c⊕ a).

We finally prove the associativity of̄ ; (A1) then easily follows. That is, we
claim (a¯ b)¯ c = a¯ (b¯ c).

First, setd = (a¯ b)− ∨ c. Then, by (a3′), (a¯ b)¯ d = (a¯ b)¯ [(a¯
b)− ∨ c]= (a¯ b)¯ c, anda¯ (b¯ d)=a¯ [b¯ ((a¯ b)− ∨ c)]=a¯ [(b¯
(b− ⊕ a−)) ∨ (b¯ c)] = a¯ [(a− ∧ b) ∨ (b¯ c)]= [a¯ (a− ∧ b)] ∨ [a¯ (b¯
c)] = a¯ (b¯ c).

So we must show (a¯ b)¯ d = a¯ (b¯ d). We havea− ≤ d, because
(a¯ b) ∧ c∼ ≤ a¯ b ≤ a¯ 1= a, i.e.,a− ≤ [(a¯ b) ∧ c∼]− = d. Soa− + d∼

exists.
By (a5′), we haveb∨ (a− + d∼) = b∨ d∼ ∨ (a− + d∼) = [(b∨ d∼)/d∼ +

d∼] ∨ (a− + d∼) = [(b® d∼) ∨ a−] + d∼ and by (a5),b∨ (a− + d∼) = a− ∨
b∨ (a− + d∼) = [a− + ((a− ∨ b)\a−)] ∨ (a− + d∼) = a− + [(b

®

a−) ∨ d∼],
so that [(b® d∼) ∨ a−] + d∼ = a− + [(b

®

a−) ∨ d∼]. Because of the associa-
tivity holding in E, we may rewrite this equation in the forma− + [((b® d∼) ∨
a−)\a−] + d∼ =a− + [((b

®

a−) ∨ d∼)/d∼] + d∼ and conclude that ((b® d∼) ∨
a−)\a− = ((b

®

a−) ∨ d∼)/d∼. But this means (b® d∼)

®

a− = (b

®

a−)® d∼,
or (a¯ b)¯ d = a¯ (b¯ d). ¤
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